
ON THE COVER
6 From the Database to the Browser — Keith Wood
Mr Wood combines his THTMLWriter component with TDataSource to
create a dynamic, data-aware component for your Delphi Web projects.

FEATURES
11 Informant Spotlight — Robert Vivrette
Fingerpainting for Adults: Mr Vivrette shows us how easy it is to
manipulate colors with Delphi — and builds a custom color property
editor to prove it.

18 OP Tech — Ray Lischner
Q: How can you create subproperty editors? A: You can’t — or can you?
With some clever (and undocumented) programming, Mr Lischner
supplies the definitive answer.

25 DBNavigator — Cary Jensen, Ph.D.
Until one version of Delphi can handle 16- and 32-bit applications,
reports Dr Jensen, compiling executables of both persuasions from one
set of source code requires planning and compromise.

28 Columns & Rows — James Callan
Polymorphism, extra-sensory perception ... and Delphi? Mr Callan
explains how to make different objects do the same thing — in this
case, to implement “Mighty Morphing Power Grids.”

39 At Your Fingertips — David Rippy
Singing the praises of planned obsolescence, Mr Rippy explains how to
programmatically create and free components at run time. As a bonus,
he describes how to make text blink.

41 Case Study — David Rippy
Lincoln Property Company needed a way to charm potential apartment
tenants. Mr Rippy reports that Ensemble’s solution, a Delphi-powered
kiosk, has proven both congenial and frugal.

44 Delphi at Work — Shamiq Cader
Too short on time to deal with “year 2000” problems? Mr Cader’s dis-
cussion of how to manipulate date and time in Object Pascal can help
you come to terms with the ticking clock.

REVIEWS
52 Teach Yourself Delphi 2 in 21 Days —

Book Review by James Callan

DEPARTMENTS
2 Delphi Tools
5 Newsline
53 File | New by Richard Wagner

1 November 1996 Delphi Informant

November 1996, Volume 2, Number 11

From Database
to Browser
Generating HTML from Table Data

Cover Art By: Doug Smith

2 November 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Kick Ass Delphi Programming
Don Taylor, et al.
Coriolis Group

ISBN: 1-57610-044-8
Price: US$39.99
(523 pages, CD-ROM)
Phone: (602) 483-0192
Raize Software Solutions,
Inc. of Naperville, IL has
announced Raize Components
for Delphi, a collection of
more than 40 native Delphi
components designed for both
16- and 32-bit development.

Featured components
include: RzSplitter for creating
Microsoft Explorer-style appli-
cations; RzTrackBar for
adding standard thumb styles,
owner-draw tick marks, and
custom thumbs; and
RzToolbar which adjusts its
style according to the operat-
ing system, and its component
editor adds buttons (including
bitmaps) to the toolbar from a
palette of 45 standard buttons.

Raize Components also fea-
tures status components and
RzSendMessage for creating
Windows 95 logo-compliant
applications that satisfy the e-
mail requirement. This
MAPI-compliant control

New Delphi
Components
sends e-mail by using string
list properties to specify recip-
ients and attached files.

It also includes more than
10 data-aware components.
Data sets can be monitored
using the RzDBStateStatus
component.

These two components
serve as the foundation for
other list-oriented controls,
such as RzCheckList and
RzFontComboBox.
There are two demonstration

programs available at the
Raize Software Solutions Web
site. Raize Components ship
with complete source code,
including all source code for
the custom component and
property editors.

Price: US$199.95
Contact: Raize Software Solutions,
Inc., 2111 Templar Drive, Naperville,
IL 60565
Phone: (630) 717-7217
Fax: (630) 717-7329
E-Mail: Internet: sales@raize.com
Web Site: http://www.raize.com
OOPSoft Inc. Introduces Object Express for Delphi

OOPSoft, Inc. of Dallas, TX

has introduced Object Express,
software that navigates the
Delphi VCL and inherited
classes. Object Express uses a
tree-view format, and is cur-
rently available for Delphi 1
and 2 running on Windows
95 and Windows NT.

With Object Express, users
can browse 16- and 32-bit
VCL object trees, right-click
to access a class’ source code,
directly inherit classes, add
classes, and access Delphi’s
Help files.

Object Express’ Quick
Search feature provides direct
access to more than 300 class-
es that comprise the VCL
Tree. The user clicks on the
Quick Search button, then
enters the class name. Quick
Search finds the class and dis-
plays its location on the tree.
It also lists all properties and
methods for the class. A right-
click takes the user to the
Object Pascal source where
the class is defined.

Object Express includes
drag-and-drop inheritance
capabilities, enabling users to
click on a particular class, and
drag and drop it off the tree.

In addition, users can access
Delphi’s Help files. With the
Extended Help button, the
user can get in-depth infor-
mation on a class in the VCL
Tree, an object in the Class
Object Tree, or a message in
the Messages Tree.

With the ability to add cus-
tom classes to the VCL Tree,
users can create a Personal
Component Library.

Object Express makes it
possible to create and manage
multiple inherited classes
simultaneously. This elimi-
nates the need to close one
file while working on anoth-
er, and gives the user the abil-
ity to create inherited classes
as fast as the PC allows.

Price: US$159
Contact: OOPSoft, Inc., 3422 Swan
Lane, Irving, TX 75062
Phone: (888) 667-7638 or
(972) 355-7401
Fax: (972) 255-4365
E-Mail: Internet:
oopsoft@airmail.net

3 November 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Secrets of Delphi 2
Ray Lischner

Waite Group Press

ISBN: 1-57619-026-3
Price: US$49.99
(831 pages, CD-ROM)
Phone: (415) 924-2575
Classic Software Ships Classic Component Set Version 1.20

Classic Software of

Inglewood, Australia
released Version 1.20 of the
Classic Component Set.
This version adds the
TcsDBDateEdit and
TcsEZKeys components,
and TcsEZForm class.

TcsDBDateEdit is an
enhanced DBEdit compo-
nent which uses an Epoch
setting to determine the
century when inputting
dates with no explicit cen-
tury digits, much like SET
EPOCH in CA-Clipper.

TcsEZForm is an abstract
form class used to derive
new forms that allow navi-
gation between controls
using the keyboard. The
TcsEZKeys component can
be used to change the
default settings at design
time.

Adding enhanced naviga-
tion to new or existing
forms is handled by adding
the CSEZForm unit to the
project, and adding
CSEZForm to the new or
existing form’s uses clause,
and changing the form’s
ancestor class from TForm
to TcsEZForm. Enhanced
navigation can be enabled
or disabled on a form-by-
form basis, or for all
TcsEZForm forms.

Other components in the
Classic Component Set
include: TcsNotebook,
TcsFormPanel, TcsGrid,
TcsSculptButton,
TcsHiResTimer,
TcsProperEdit,
TcsDBProperEdit,
TcsRankListBox, and, in
Delphi 1 only,
TcsAutoDefaults.

A free trial version is
available from Classic
Software’s Web site.

Price: Version 1.20, US$69,
AUS$90, source code is included.
There are no run-time royalties, and
free technical support is available. The
set ships with a 30-day money-back
guarantee.
Contact: Classic Software, Unit 2,
19A Wood St., Inglewood, WA 6052,
Australia
Phone: 61 9 271 5407
Fax: 61 9 271 5407
E-Mail: Internet: 100033.1230-
@compuserve.com
Web Site: http://ourworld.com-
puserve.com/homepages/classicsoftware
HREF Tools Announces the Release of WebHub EEP 8.9

HREF Tools Corp., of

Santa Rosa, CA, announced
the release of WebHub Early
Experience Package (EEP)
8.9. Based on Delphi 2,
WebHub EEP 8.9 is a Web
application development tool
that allows developers to put
database information on the
Web without CGI program-
ming for intranets and the
Internet. The new version
integrates several components
which perform various tasks,
including database field
lookup, full record display,
VRML support, and e-mail
generation. WebHub sites run
on the Windows platform.

WebHub EEP 8.9 adds a
TWebDataForm component
which generates HTML for
viewing or editing a database
record. It connects to any
Delphi-compliant database,
including Oracle, Paradox,
Access, dBASE, Sybase,
Informix, and InterBase.
WebHub includes over 30

Web-specific components that
can be combined to create an
unlimited number of applica-
tions for interactive sites. The
components can save state,
track surfers individually, han-
dle multiple simultaneous
requests for high traffic sites,
and separate HTML from
programming code.

Price: Starts at US$575
Contact: HREF Tools Corp., 300 B St.,
Ste. 215, Santa Rosa, CA 95401
Phone: (800) 898-4733 or
(707) 542-0844
E-Mail: Internet: martha@-
mail.href.com
Web Site: http://www.href.com

4 November 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Developing Windows Applications

Using Delphi

Paul Penrod
John Wiley & Sons, Inc.

ISBN: 0-471-11017-5
Price: US$29.95 (353 pages)
Phone: (212) 850-6630
Kalliopi International Announces Release of Security Components

Kalliopi International of

Seattle, WA announced the
release of its 32-bit compati-
ble Security VCL components
for Delphi. The two compo-
nents, TKpSecurityGuard and
TKpGuardList, work together
to provide a complete Delphi
Security Management System.
The GuardList component

allows visual objects on the
form to be protected. As users
log in and out, the objects
protected by the GuardList are
enabled and disabled, based
on the user’s security level.

User login and logout,
password verification, and
functions to change pass-
words and edit user informa-
tion are also provided.

The components are
designed to be completely
customizable.

Every piece of text can be
customized, including dialog
captions and button labels.
Properties are provided for
access to important names
such as user ID and password.

Security VCL features a
one-way encryption algo-
rithm, and supports a cus-
tom algorithm attached to
the EncryptionEvent trigger.
The components are avail-

able through the CompuServe
Shareware Registration Forum
(ID 11704, and 11703 respec-
tively, for the 16-bit version,
and 13007 for the 32-bit
compatible version).
Price: Version 1.0 (16-bit) and
Version 1.02 (32-bit) with source code,
US$49.95; Version 1.0, and 1.02,
US$24.95.
Contact: Kalliopi International, 10423
40th Ave. NE, Seattle, WA 98125
Phone: (206) 522-7327
Fax: (206) 522-7327
E-Mail: CIS: 73523,342 or
Internet: support@kalliopi.com
CIS Forum: GO DELPHI
Web Site: http://www.kalliopi.com
Seagate’s Information Management Group Ships Crystal Reports 5.0

Seagate Software’s

Information Management
Group has launched Crystal
Reports 5.0. This version
adds new report types, data-
base drivers, object-oriented
report design control, addi-
tional developer features, and
report distribution options,
including the ability to pub-
lish reports on the Web.

With new native drivers for
Oracle, Sybase, and
Microsoft SQL Server,
Crystal Reports 5.0 can read
over 25 PC and SQL data
sources, and access other data
sources such as Microsoft
Windows NT event logs,
Microsoft Exchange data,
and Web server activity logs.

Reports can be exported to
more than 20 formats,
including HTML, and dis-
tributed via e-mail, Lotus
Notes, Microsoft Exchange,
or the Web.

Crystal Reports can also be
used as an application devel-
opment tool. Rather then cod-
ing reports, developers can
create and integrate reports
into their database applica-
tions using various program-
ming interfaces, including: the
Delphi Visual Component
Library (VCL), ActiveX
Controls, Visual Basic Custom
Controls (VBX), the MFC
Class Library with
AppWizard, or direct calls to
the Crystal Report Engine.

Price: Crystal Reports Professional 5.0,
US$395; upgrade for existing users,
US$199. Crystal Reports Standard 5.0,
US$195; upgrade for current users,
US$79. The Crystal Report Engine can
be distributed royalty free. The New
Features Interactive Learning CD,
US$99.
Contact: Seagate Software,
Information Management Group,
1095 West Pender St., Vancouver,
BC, Canada V6E 2M6
Phone: (800) 877-2340 or
(604) 681-3435
Fax: (604) 681-2934
E-Mail: Internet: sales@-
img.seagatesoftware.com
Web Site: http://www.img.seagate-
software.com

5 November 1996 Delphi Informant

News
L I N E

November 1996

Borland to Co-Sponsor
Developers Conference

Desktop Associates Ltd. and
Dunston Thomas Ltd., in

conjunction with Borland, will
host the Borland Developers
Conference in London from

April 20-24, 1997.
This year, the Borland

Developers Conference will be
divided into four major tracks,
and multiple categories within
those tracks. The tracks are:
Delphi, Internet and intranet,

client/server and databases, and
a general track that includes ses-

sions covering business solu-
tions, operating systems, and the
use of companion products to

extend your Borland applications
and development environments.

For more information,
e-mail Chris Read at

cread@dtuk.demon.co.uk, or
call Borland at (408) 431-1000.
Borland Announces Its Latest Version of InterBase

Scotts Valley, CA — Borland

International Inc. has released
InterBase 4.2, a platform-
independent, SQL database
server for Windows 95 and
Windows NT. InterBase 4.2
features an improved version
of the InterBase SuperServer
Architecture. It also includes
ODBC 2.5 drivers for
Windows 95 and Windows
NT, and thread-safe 32-bit
client libraries.
The InterBase 4.2 advanced

feature set includes: dramatic
performance enhancements
for large, multi-user systems;
32-bit GUI tools for interac-
tive SQL, server management,
and license management; and
an identical code base and fea-
ture set across Windows 95
and Windows NT. It’s also
certified and optimized for
Microsoft NT 4.0, and tuned
for use with Borland’s forth-
coming all-Java JDBC driver
for InterBase and InterClient.

Local InterBase, a single-
user version of the server, is
priced at US$249.95. The
InterBase Server for
Windows 95 is designed
specifically for small teams
that require no more than
four concurrent users, and
retails for US$599.95.
InterBase Server for
Windows NT is designed
and optimized for larger
client/server solutions, and is
certified for use with SMP
servers. It is priced at
US$850. InterBase upgrades
for 4.0 or 4.1 are priced at
US$499.95. Additional
license packs for Windows
NT are available in single-,
10-, and 20-user configura-
tions. For more information
call Borland at (800) 233-
2444, or visit their Web site
at http://www.borland.com.
Borland Names Paul W. Emery II as CFO

Scotts Valley, CA — Borland

International Inc. has named
Paul W. Emery vice president
of finance and administration,
and chief financial officer
(CFO). Emery, who reports
to Borland’s Acting Chief
Executive Officer and
Chairman of the Board,
William F. Miller, will be
responsible for managing
finance, information services,
and operations.

Emery joins Borland after
serving as CFO for
Micromodule Systems.
Previously, Emery held posi-
tions as vice president of
finance and administration,
and acting vice president of
marketing for Megatest Corp.;
CEO for System Industries;
senior vice president of Santa
Cruz Operation; CEO for
Airmac Technology Systems;
and CFO for Xynetics.
Additionally, Emery served as
a senior manager for IBM,
and a finance manager for
Ford Motor Co.
Borland Announces IntraBuilder in Three Configurations

Scotts Valley, CA — Borland

has announced product line
and pricing strategies for its
IntraBuilder line of live, data-
driven intranet application
development suites for
Windows NT and Windows
95. Variously bundling
Netscape FastTrack Web
Server and Navigator Gold
Internet client software,
IntraBuilder is available in
three configurations.
Designed for small work-

groups and low-volume
intranet applications, the
Standard version includes
Netscape Navigator Gold, and
Borland’s Personal Web Server
with access to Paradox,
FoxPro, dBASE, and Access
data. The Standard version is
priced at US$99.95.

IntraBuilder Professional ver-
sion includes Netscape
FastTrack Web server for
Windows NT and the
Netscape Navigator Gold
browser, and is designed for
higher-volume intranets. It
includes support for desktop
database formats, as well as
remote data access to
Microsoft SQL Server, and
InterBase Windows NT
Server. It also supports the
leading Web server APIs,
including NSAPI, ISAPI, and
CGI. The Professional version
retails for US$499.95.

Designed for high-volume,
scalable, decentralized, and
centralized IT environments,
IntraBuilder Client/Server
offers all the Professional ver-
sion features, plus access to all
corporate database servers,
including native drivers for
Oracle, Sybase, Informix, and
DB2, and others through
ODBC. IntraBuilder
Client/Server allows develop-
ers to build multi-tier applica-
tions using Remote
IntraBuilder Agents, which
distribute incoming requests
among several machines.
IntraBuilder Client/Server is
available for US$1,995.

For more information, con-
tact Borland at (408) 431-
1000, or visit their Web site at
http://www.borland.com/-
intrabuilder/.

6 November 1996 Delphi Informant

From Database to Browser
A Component to Write Data to HTML Tables

On the Cover
Delphi 1 / Delphi 2 / Object Pascal / HTML

By Keith Wood

Figure 1: A sam

<table border=2
<caption align=
</caption>
<tr><th align=r
<th align=right
<tr><td align=r
<td align=right
<tr bgcolor=#FF
<td>Underwater
<td align=right
<tr><td align=r
<td align=right
<tr><td align=r
<td>Second Stag
<td align=right
</table>
Earlier this year, we developed an HTML-writing component that allowed
us to control the generation of a Web page from a Delphi program with

little knowledge of HTML. [Keith Wood introduced his THTMLWriter compo-
nent in the May 1996 Delphi Informant.] This article builds on that work and
describes another component that extracts data from any database avail-
able to Delphi and presents it in an HTML table for display on the Web.
Dynamic Web pages are becoming more
common every day. Organizations are plac-
ing data on the Web for clients and other
interested people to access. Managing all
this data is quite a task — one well-suited
to a database. Combining the abilities of
the THTMLWriter and TDataSource com-
ponents makes it easier to create your Web
site and keep it up-to-date.

THTMLWriter
To recap, the THTMLWriter component
provides numerous methods that either
format text into HTML code as strings, or
write HTML to a file for viewing. This
article is about those methods related to
HTML tables.
ple table description in HTML.

 width=100% bgcolor=#FFFFFF>
center valign=top>A sample HTML table

ight>Part No</th><th>Description</th>
>List Price</th></tr>
ight>900</td><td>Dive kayak</td>
>3999.95</td></tr>
0000><td align=right>912</td>
Diver Vehicle</td>
>1680.00</td></tr>
ight>1313</td><td>Regulator System</td>
>250.00</td></tr>
ight>1314</td>
e Regulator</td>
>365.00</td></tr>
HTML tables are delimited by the <table>
and </table> tags. Within these bound-
aries, tables comprise rows, denoted by the
<tr> tag, which are composed of headings
<th>, or cells <td>. Headings and cells con-
tain text and other HTML tags. Additional
table elements include borders that can be
sized and made invisible (or colored in some
browsers), and a caption that is applied to
the entire table. All table elements can be
aligned horizontally and vertically.

An example of HTML code for a table is
shown in Figure 1. Figure 2 lists the
THTMLWriter methods used to produce
tables. Our new component invokes
these methods at the appropriate times to
present the information from the data-
base in HTML.

HTML Data Source
We want the ability to take data from any
source available to Delphi and display it as
an HTML table. Fortunately, Delphi is set
up to easily interact with a large variety of
data sources while hiding most of the opera-
tion’s complexities. TTable provides an inter-
face to database tables (desktop or server),
while TQuery gives us access to the same data
via SQL. These components are derived
from TDataset, which encapsulates the com-
mon interface for any data source, allowing
both to be treated the same when accessing
the data (polymorphism in OO terminology).

Procedures Functions

TableStartParams FormatTableStartParams

TableStart FormatTableStart

TableEnd FormatTableEnd

TableRowStartParams FormatTableRowStartParams

TableRowStart FormatTableRowStart

TableRowEnd FormatTableRowEnd

TableHeadingStartParams FormatTableHeadingStartParams

TableHeadingStart FormatTableHeadingStart

TableHeadingEnd FormatTableHeadingEnd

TableHeadingParams FormatTableHeadingParams

TableHeading FormatTableHeading

TableCellStartParams FormatTableCellStartParams

TableCellStart FormatTableCellStart

TableCellEnd FormatTableCellEnd

TableCellParams FormatTableCellParams

TableCell FormatTableCell

On the Cover

Figure 2: These THTMLWriter component methods deal with
tables.
Delphi also provides the TDataSource as a buffer
between TTable and TQuery and the display components
we place on our forms. TDataSource can communicate in
a standard way with any of the data sets. From this com-
ponent, we derive our new THTMLDataSource compo-
nent, which provides the DataSet property and our link
to the data itself. Deriving the component, rather than
simply including a DataSet property, retains all the func-
tionality of the original, allowing the new component to
be used just as the old one.

Next, we need a link to the THTMLWriter component
that does all the work for us, so we add an
HTMLWriter property to the component. To enable us
to take full advantage of the abilities of this compo-
nent, we must surface all the attributes we want to
access. This involves creating a property from all the
parameters we may want to alter when generating the
table, including the alignment and color attributes.

The fields displayed in the table are provided by the
DataSet in its Fields property, which can be set manually
at design time, or generated automatically by Delphi. As
with the TDBGrid component, we show only the visible
fields, allowing additional fields required for the data
access to be present without affecting the final output.

Also from the field definitions, we take the label to be
displayed at the top of each column and the field’s align-
ment. The column label is taken from the DisplayName
property of the field. This is a pointer to the
DisplayLabel, if entered, or FieldName property, and
7 November 1996 Delphi Informant
reflects what would appear in a DBGrid header for this
field. To access the value, we need to de-reference the
pointer by using the pointer symbol (^).

This de-referencing is not required in Delphi 2. To overcome
this and have a single source for Delphi 1 and 2, we employ
conditional compiler directives. This allows sections of code
to be included or excluded based on various criteria. In this
case, we require a conditional symbol defined only in Delphi
2, and achieved through the pre-defined WIN32 symbol:

{$IFDEF WIN32}
sCell := Fields[i].DisplayName;
{$ELSE}
sCell := Fields[i].DisplayName^;
{$ENDIF}

The column labels may not be required in all cases, so a
Boolean property, Headers, is added to control their pres-
ence. Similarly, the default alignment within HTML may
be desired over the field alignments as specified here,
resulting in another Boolean property, UseFieldAlign.

Displaying the Data
The data displayed for each field is taken from the
DisplayText property of the fields. This is what Delphi
uses in its data-aware components, incorporating any for-
matting specified in the DisplayFormat or EditMask prop-
erties. A consequence of this is that BLOB fields (such as
graphics) aren’t displayed in a meaningful way, but simply
as field types in parentheses. Memo fields in the database
are handled separately. Each line in the memo is extracted
and written into the HTML table. To alter the values of
the fields, we could also tap into their OnGetText event.

Another problem is that HTML doesn’t include the graph-
ic field’s content on the page itself. Instead, a reference is
made to an external image file. One way to show these
images in an HTML table is to extract them from the data-
base, write them to a temporary file, and include references
to that file. The difficulty then becomes when to remove
these temporary files. We can’t tell when the user may
request them again. An alternate, better solution is to set
up a CGI program that extracts the graphic from the data-
base and delivers it to the user directly on request, but that
is not the topic of this article.

Calculated or lookup fields can be added as if we are dis-
playing the results on a Delphi form. This allows more
complicated formatting to be applied to the fields if neces-
sary. Remember that we have the HTML generating
resources of the THTMLWriter component at our disposal.

One of the more common reformatting tasks is to turn
one of the columns into a link to other HTML docu-
ments. To expedite this, two additional properties are pro-
vided: the LinkField property, which specifies the field that
supplies the text for the hot-spot within the table, and the
LinkTarget property, which identifies the field to be used
as the destination of the link.

Figure 3 (Top): The first page of the demonstration project extracts
data from a Paradox table (Parts.DB) that ships with Delphi.
Figure 4 (Bottom): The HTML page resulting from the query of
Parts.DB.

On the Cover
To provide greater control over the appearance of the
table, two events have been defined: OnRowShow and
OnCellShow. The former is triggered at the start of every
row, and the latter is triggered for each individual cell as
it is formatted. Neither event is called for the header row
if it’s displayed. These events allow the alignment and col-
ors for that row or cell to be altered as required. The type
declaration for the OnRowShow property is shown here:

THTMLRowEvent = procedure(Sender: TObject;
var ahAlignHoriz: THTMLAlignHoriz;
var avAlignVert: THTMLAlignVert;
var clrBackground, clrBorder, clrBorderLight,

clrBorderDark: TColor) of object;

Note the use of the var directive to allow for changes to
these values.

All of this is brought together in the one new method
of the component, the GenerateHTML procedure. After
the links to the HTML writer and data set have been
made and the output parameters have been set, this
method is invoked to produce the HTML table. It
assumes the table is part of a larger HTML document,
and doesn’t perform any initialization or finalizing of
that document. Thus the calling sequence should be:

MyHTMLWriter.Initialise;
MyHTMLDataSource.GenerateHTML;
MyHTMLWriter.Finalise;

Normally, additional code would provide a heading for
the page and any other text related to the contents.
The complete code for the GenerateHTML method is
shown in Listing One beginning on page 9.

Exceptions
Several error conditions can occur during the generation
of the HTML table. These include having no
HTMLWriter or DataSet assigned; specifying only one of
the LinkField and LinkTarget fields; and the LinkField
not being visible, having no visible fields, and having no
records selected from the database. As usual, these are
raised as exceptions for the calling routine to handle.

To simplify the processing of any errors, the exception
used in this component is derived from the EHTMLError
exception belonging to the THTMLWriter component.
This means all HTML-related errors can be trapped and
dealt with together by looking for the common ancestor.

Demonstration Project
The demonstration project included with this article
shows some of what the THTMLDataSource component
can do. In each case, the HTML is generated into the file
HTMLData.HTM, which can then be loaded into your
browser. The data source is a Paradox table: WebSites.DB.
The first page (see Figure 3) extracts data from the
Parts.DB table that ships with Delphi. Access is provid-
ed through either a TTable or TQuery component, each
8 November 1996 Delphi Informant
with additional options. The table’s order can be
changed by selecting an index from the list, and the
Cost column can be included or excluded. The latter is
done by setting the field’s Visible property to match the
check box on the form. The query searches for text
entered anywhere in the Description field. Try Dive or
Regulator to get some results.

The right half of the page allows several of the proper-
ties of THTMLDataSource to be altered. The resulting
HTML page can be seen in Figure 4. Try different com-
binations of options to see how they affect the output.

If you have a browser that supports colored cells in tables,
you can see the colors selected for the table and header
row. Also, the Cost column, when visible, is yellow, and
rows with less than 20 items on hand are red. This is
achieved through the OnRowShow and OnCellShow
events. Check out the code to see how it works.

The second page of the demonstration project (see
Figure 5) shows the component’s ability to automatical-
ly generate links to other documents in the HTML
table. A sample database with some URLs is provided
and displayed on the screen. The LinkField and
LinkTarget properties of the THTMLDataSource com-

Figure 5 (Top): The second page of the demonstration program.
Figure 6 (Bottom): When generated, the contents of the Web
Site column become a link, with the destination coming from
the URL field.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine.
Occasionally working with Delphi, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au, or by phone
at 6 291 8070.

On the Cover
ponent are set to the Web Site and URL fields respec-
tively. When generated (see Figure 6), the contents of
the Web Site column become a link, with the destina-
tion coming from the URL field.

The demonstration project is best run outside of
Delphi. Otherwise, exceptions that are trapped internal-
ly may appear (if “Break on Exceptions” is on) and dis-
rupt the flow of the program.

Conclusion
This extension to the THTMLWriter component enables
us to display data as HTML from any data source avail-
able to Delphi. The quantity and appearance of the data
is controlled in the same manner as showing it on a
form in Delphi. Combine this with a CGI program to
allow users to specify the data they are interested in, and
you have a dynamic, up-to-date Web site.

Windows platforms are becoming more common as Web
servers. By leveraging our knowledge and abilities in
Delphi, we can provide more responsive applications to
run on them, and move into new areas of endeavor. ∆
9 November 1996 Delphi Informant
The THTMLWriter component and demonstration project ref-
erenced in this article are available on the Delphi Informant
Works CD located in INFORM\96\NOV\DI9611KW. Note:
The THTMLWriter component featured in this download is
an update to that provided with the previous article. The
change involves moving the open HTML file from the Create
method to Initialise. This allows multiple pages with the same
name to be generated consecutively.
Begin Listing One — The Generated HTML Method

{ Generate HTML to display the table }
procedure THTMLDataSource.GenerateHTML;
const

ahAlignments: array [TAlignment] of THTMLAlignHoriz =
(ahLeft, ahRight, ahCentre);

var
i, iCount: Integer;
ahAlignHoriz: THTMLAlignHoriz;
avAlignVert: THTMLAlignVert;
clrBackground, clrBorder,
clrBorderLight, clrBorderDark: TColor;
sCell: string;
slMemo: TStringList;
bmkSave: TBookmark;

begin
{ Check that HTMLWriter is set }
if not Assigned(FHTMLWriter) then

raise EHTMLDataSource.Create(tcTable,
'No HTMLWriter assigned');

{ Check that DataSet is set }
if DataSet = nil then

raise EHTMLDataSource.Create(tcTable,
'No DataSet assigned');

{ Check linked fields }
if (LinkField <> nil) or

(LinkTarget <> nil) then
begin

if LinkField = nil then
raise EHTMLDataSource.Create(tcTable,

'Missing linked field name');
if not LinkField.Visible then

raise EHTMLDataSource.Create(tcTable,
'Linked field is not visible');

if LinkTarget = nil then
raise EHTMLDataSource.Create(tcTable,

'Missing link target field name');
end;

with DataSet do begin
{ Determine whether table has visible fields & records }
iCount := 0;
for i := 0 to FieldCount - 1 do

if Fields[i].Visible then
Inc(iCount);

if iCount = 0 then
raise EHTMLDataSource.Create(tcTable,

'No fields in this dataset are visible');
if RecordCount = 0 then

raise EHTMLDataSource.Create(tcTable,
'There are no records in this dataset');

On the Cover

e

E

{ Dump table to HTML }
with HTMLWriter do begin

TableStartParams(Border, Width, CellSpacing,
CellPadding, ColourBackground, ColourBorder,
ColourBorderLight, ColourBorderDark, Caption,
CaptionAlignHoriz, CaptionAlignVert);

{ Write headers }
if Headers then

begin
TableRowStartParams(AlignHoriz, AlignVert,

HeaderBackground,HeaderBorder,HeaderBorderLight,
HeaderBorderDark);

for i := 0 to FieldCount - 1 do
if Fields[i].Visible then

begin
{$IFDEF WIN32}
sCell := Fields[i].DisplayName;
{$ELSE}

sCell := Fields[i].DisplayName^;
{$ENDIF}
if UseFieldAlign then
TableHeadingParams(FormatEscapeText(sCell),
0,0,ahAlignments[Fields[i].Alignment],
avDefault,clDefault,clDefault,clDefault,
clDefault)

else
TableHeading(FormatEscapeText(sCell));

end;
TableRowEnd;

end;

{ Don't update screen while processing }
DisableControls;
{ Save data set position }
bmkSave := GetBookmark;
{ Create temporary area for memo fields }
slMemo := TStringList.Create;

{ Write contents of rows }
try

First;
while not EOF do begin { Process all rows }

{ Check row alignment and colours }
ahAlignHoriz := ahDefault;
avAlignVert := avDefault;
clrBackground := clDefault;
clrBorder := clDefault;
clrBorderLight := clDefault;
clrBorderDark := clDefault;
if Assigned(FOnRowShow) then

OnRowShow(Self,ahAlignHoriz,avAlignVert,
clrBackground,clrBorder,clrBorderLight,
clrBorderDark);

{ And start the row }
TableRowStartParams(ahAlignHoriz,avAlignVert,

clrBackground,clrBorder,clrBorderLight,
clrBorderDark);

{ Display each visible field }
for i := 0 to FieldCount - 1 do

if Fields[i].Visible then
begin

{ Check column alignment and colours
- default to row values }

if UseFieldAlign then
ahAlignHoriz :=

ahAlignments[Fields[i].Alignment]
else
ahAlignHoriz := ahDefault;
avAlignVert := avDefault;
clrBackground := clDefault;
10 November 1996 Delphi Informant
clrBorder := clDefault;
clrBorderLight := clDefault;
clrBorderDark := clDefault;

if Assigned(FOnCellShow) then
OnCellShow(Self,Fields[i],ahAlignHoriz,

avAlignVert,clrBackground,clrBorder,
clrBorderLight, clrBorderDark);

{ And display the field }
if Fields[i] is TMemoField then

{ Add all the lines }
begin
slMemo.Assign(TMemoField(Fields[i]));
TableCellStartParams(0,0,0,
ahAlignHoriz, avAlignVert,
clrBackground,clrBorder,
clrBorderLight, clrBorderDark);
for iCount := 0 to slMemo.Count-1 do

EscapeText(slMemo[iCount] + ' ');
TableCellEnd;

end

else { Add text representation of field }
begin

if Fields[i] = LinkField then
sCell :=

FormatLink(LinkTarget.AsString,
'',FormatEscapeText(
Fields[i].DisplayText))

else
sCell := FormatEscapeText(

Fields[i].DisplayText);
TableCellParams(sCell,0,0,0,
ahAlignHoriz,avAlignVert,
clrBackground,clrBorder,
clrBorderLight,clrBorderDark);

end;
end;

{ Finish the row }
TableRowEnd;
Next;

end; { while }
finally

{ Return to original position }
GotoBookmark(bmkSave);
FreeBookmark(bmkSave);
{ Update screen again }
EnableControls;
{ Finish off the HTML table }
TableEnd;
{ Release string list resources }
slMemo.Free;

end; { try..finally }

end; { if Headers then... }
end; { with HTMLWriter do begin... }

nd; { with DataSet do begin... }

nd Listing One

11 November 1996 Delphi Informant

Informant Spotlight
Delphi 2 / Object Pascal

By Robert Vivrette

Fingerpainting
Building a Custom Color Property Editor
Remember fingerpainting as a child? Sticking your fingers in four or five
jars of paint and then smearing your hands around to create countless

new colors. Remember the feeling? It was cool!
Well, it still feels cool, but the tools have
changed. Instead of your fingers, you now
have the Microsoft Windows color system.
Granted, the system isn’t perfectly designed,
but it does allow you to fiddle with colors
and come up with new ones.

In this article, we’ll investigate how colors are
represented in Delphi (and Windows), and
how you can manipulate them to your
advantage. At the end of the article, we’ll
cover how to integrate your custom colors
directly into the Delphi IDE with the
ColorEdt property editor.
How Much Money Is $00FF80FF?
What happens when you select a color for a
component, but the color is not one of the
pre-defined ones? (By pre-defined, I mean of
course, colors such as clYellow, clSilver, and
clLime.) Let’s say you want to change a form’s
color via the Object Inspector. You double-
click on the value for the form’s Color proper-
ty to display the Color dialog box and see
that some of the available colors don’t match
the standard set of colors in Windows. If you
select one of these “non-standard” colors, you
might expect the Object Inspector to display
a descriptive word for your selection (e.g.
clPaleYellow or clUglyPink). Instead, the
Object Inspector displays something like
$00FF80FF (see Figure 1). What the heck is
this value? And what good is it to you?

To understand a bit more, we need to see the
format of the type TColor (the base type hid-
ing behind Color properties). Searching on
“TColor | TColor Type” in Delphi’s online
Help reveals that TColor is declared as:

TColor = -(COLOR_ENDCOLORS + 1)..$02FFFFFF;

This type declaration defines a range of col-
ors. The beginning (negative) values are used
to represent the System colors (such as
clBtnFace and clWindow). The positive values
denote literal colors that the Windows GDI
can represent.

If you continue reading online Help’s
description of the TColor type, you’ll see that

Figure 1 (Top): When a custom color is selected from the
Windows Color dialog box, the Object Inspector displays a cryp-
tic hexadecimal value.
Figure 2 (Bottom): The layout of the TColor type.

High Byte

High Word Low Word

Low Byte High Byte Low Byte

$0 $0 $FF $0

Informant Spotlight

Figure 3: The AdjustColor function.

unit Coloradj;

interface

uses
WinProcs,Graphics;

function AdjustColor(A: TColor; Factor: Real): TColor;

implementation

function AdjustColor(A: TColor; Factor: Real): TColor;
var

R,G,B : Byte;
begin

Result := A;
R := Round(GetRValue(ColorToRGB(A))*Factor);
G := Round(GetGValue(ColorToRGB(A))*Factor);
B := Round(GetBValue(ColorToRGB(A))*Factor);
Result := RGB(R,G,B);

end;

end.

Figure 4:
Clicking on Color
Demo’s top panel
displays the Color
dialog box.
Delphi defines TColor as a four-byte hexadecimal number.

This four-byte value is then disseminated into each of its
component bytes. Again, from online Help:

If you specify TColor as a specific 4-byte hexadecimal
number instead of using the constants defined in the
Graphics unit, the low three bytes represent RGB color
intensities for blue, green, and red, respectively. The
value $00FF0000 represents full-intensity, pure blue,
$0000FF00 is pure green, and $000000FF is pure red.
$00000000 is black and $00FFFFFF is white.

Now we have a little more information. According to this defin-
ition, the organization of TColor appears as shown in Figure 2.
For each of these words, a high and low word (two bytes each)
and high and low bytes (one byte) exist. The value diagrammed
in Figure 2 would be $0000FF00, equating to solid green. The
high byte of the high word is reserved for Delphi to specify the
system-wide colors. For the purposes of this article, we’re only
interested in the low three bytes.

Stop and Think
Let’s think about this a bit. Suppose we don’t want solid green,
but something that’s only about 80 percent green. It’s simple to
achieve. As mentioned, the low three bytes in TColor represent
the amount of red, green, and blue in the color. Since each of
these colors is represented by a single byte, we see that the allow-
able range for each of the red, green, and blue components of a
TColor can be in the range of 0 to 255 (i.e. the range for a byte).
12 November 1996 Delphi Informant
If solid green was represented as 0 for red, 255 for green, and
0 for blue, then it should be easy to reduce the green value of
255 by 20 percent to get our 80 percent green. So, that’s
exactly what we’ll do!

Figure 3 is the AdjustColor function. It accepts a color and
a percentage, and returns a new color. The new color is
formed by breaking the passed-in color into its component
RGB values, which are then multiplied by the percentage
supplied, and then recombined as a TColor for the func-
tion result.

The ColorToRGB function takes the passed-in TColor value
and converts it to an RGB value. In most cases, the TColor
is exactly equal to the RGB value. Yet when the TColor is
holding a System color (such as clBtnFace or clWindow), it’s
first converted into the appropriate RGB value.

After obtaining an RGB value with ColorToRGB, the
GetRValue, GetGValue, and GetBValue functions are used
to break out the individual amounts of red, green, and
blue. The results are then multiplied by the percentage
passed in and assigned to the R, G, and B variables. Lastly,

Informant Spotlight

Figure 6: A sample program showing colors being modified
with the AdjustColor function.

unit Demo1u;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, ColorAdj, ExtCtrls;

type
TForm1 = class(TForm)

Panel1: TPanel;
Panel2: TPanel;
Panel3: TPanel;
Panel4: TPanel;
Panel5: TPanel;
Panel6: TPanel;
Panel7: TPanel;
Panel8: TPanel;
Panel9: TPanel;
Panel10: TPanel;
MainPanel: TPanel;
ColorDialog1: TColorDialog;
procedure MainPanelClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;
var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.MainPanelClick(Sender: TObject);
begin

if ColorDialog1.Execute then
with ColorDialog1 do begin

MainPanel.Color := Color;
Panel1.Color := AdjustColor(Color,1.0);
Panel2.Color := AdjustColor(Color,0.9);
Panel3.Color := AdjustColor(Color,0.8);
Panel4.Color := AdjustColor(Color,0.7);
Panel5.Color := AdjustColor(Color,0.6);
Panel6.Color := AdjustColor(Color,0.5);
Panel7.Color := AdjustColor(Color,0.4);
Panel8.Color := AdjustColor(Color,0.3);
Panel9.Color := AdjustColor(Color,0.2);
Panel10.Color := AdjustColor(Color,0.1);

end;
end;

end.
these three variables are passed in to the Windows API
function, RGB, that combines them back into a composite
RGB (or TColor) value.

Into Action
Let’s put this function into action with two examples.
AdjustColor has been saved as a unit named COL-
ORADJ.PAS, and this unit has been placed into the uses
clause for each of the sample pro-
grams we’ll discuss.

Figure 4 shows the simple Color
Demo program (DEMO1.DPR)
which contains a number of pan-
els. Clicking on the top panel
(Click Here To Set Color) displays
the common Color dialog box.
After selecting a color, you can
click the OK button to close the
Color dialog box. The Color
Demo application then “dyes” each
of the 10 panels on the form with
varying shades of the chosen color
(see Figure 5).

The effect you see on-screen will be governed primarily by
the color depth that your video card is configured to dis-
play. If you are viewing 16 or 256 colors, the panels will
be displayed using dithered colors. This is Windows’ way
of simulating another color by using only a limited set of
primary colors. If your system is displaying 16 million col-
ors or higher, then you’ll see perfectly solid color represen-
tations for each panel. The 16-million color depth can dis-
play these colors accurately because it’s using exactly the
specified values of red, green, and blue. The 16 and 256
color depths must map the selected RGB values to the
closest one available in either the current Color palette or
the System palette. Figure 6 shows the source code for the
Color Demo application.

The second demonstration program (DEMO2.DPR) shows
how you can put gradient fill patterns on your forms.
Implementing a simple routine in a form’s FormPaint event
handler will allow you to control how any form is displayed.
In this example, a gradient fill pattern is drawn using our
AdjustColor function.

This technique is applied to a simple dialog box (see
Figure 7). Figure 8 is the code behind this sample applica-
tion. All that is done here is to repeatedly draw small rec-
tangles across the panel’s surface. Each rectangle is drawn
in a slightly different shade than the last. The result is a
simple, effective gradient fill across the form’s surface.

The ColorEdt Property Editor
Now that we know more about colors and how they’re repre-
sented, we’ll create a property editor to add custom colors to
the Delphi IDE.

Figure 5: After you’ve
selected a color, each
panel in the Color
Demo application dis-
plays a shade 10 per-
cent lighter than the
previous one.
13 November 1996 Delphi Informant
Whenever you display the Color
property’s drop-down list in the
Object Inspector, Delphi uses a
property editor that populates
this list with its currently-defined
TColor constants. To integrate
custom colors into the Object
Inspector, it’s a simple matter of
creating a new property editor for
TColor values and extending it to handle custom values. This
new property editor actually descends from the existing Color
property editor so that we gain all the existing functionality
Delphi provides.

Figure 7: Using AdjustColor
to do gradient backgrounds.

Figure 8: A sample program showing how to do gradient fills.

unit Demo2u;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls,
Buttons, ExtCtrls, ColorAdj;

type
TForm1 = class(TForm)

Label1: TLabel;
BitBtn1: TBitBtn;
BitBtn2: TBitBtn;
procedure FormPaint(Sender: TObject);
procedure BitBtn1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormPaint(Sender: TObject);
var

a : Integer;
begin

with Inherited Canvas do
begin

Pen.Style := psClear;
for a := 0 to ClientHeight div 2 do

begin
Brush.Color :=

AdjustColor(clLime,a*2/ClientHeight);
Rectangle(0,ClientHeight-a*2,

ClientWidth+1,ClientHeight-a*2+3);
end;

end;
end;

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Close;
end;

end.

Informant Spotlight

Figure 9: The interface for the ColorEdt property editor.
To build the color property editor, we must first create the
interface that allows us to select the colors (see Figure 9).
This is often the best approach for creating a dialog box-
based property editor such as this. After creating a stand-
alone application, you’ll find that converting it to a property
editor is fairly simple.

A name for the color the user has specified will appear in the
edit field at the top of the form. The panel below it will show
the currently-selected color, and the list box on the right will
show the custom colors that have already been defined.

Friendly, Friendly, Friendly
Some selected enhancements make the property editor as user-
friendly as possible. The list box on the right is of an owner-
14 November 1996 Delphi Informant
draw variety, allowing us to include small swatches of the col-
ors. This will help a user visually associate the custom colors
with their constants. Clicking on the color panel activates a
TColorDialog (provided in Delphi) that allows the user to
select and mix custom colors. After selecting a color in this
way, a user can type in a color constant and click on the Save

button to add the new color to the list of those currently
defined.

Although the property editor completely integrates custom
colors into the Delphi IDE, it must perform one addition-
al task to be a complete solution. To allow a user to speci-
fy any of the constants within a piece of Delphi source
code (e.g. a unit or project file) the compiler must know
how these constants are defined. As a result, the property
editor includes a button (named Save Source) that writes
out the currently-defined custom color constants as a
source code unit. Then, by adding this unit to any project,
a user can continue to use the custom colors even outside
the IDE.

The interface to the property editor is straightforward. Two
principal ways of activating it are to enter a question mark
(?) instead of a color name. The second is to type any
color constant into the Object Inspector that has not
already been defined. For the value of a form’s Color prop-
erty, for example, you could type in clPeriwinkle. This
color is not one of the standard color constants, and it
wasn’t already specified as a custom color. Therefore, the
property editor presents our dialog box to allow the user to
pick the color. To enforce the naming scheme that Borland
has established, a color constant is only recognized as such
if the first two characters of the name are cl.

When the custom property editor is displayed, the user can
simply click on the panel under the constant name. This dis-
plays the common Color dialog box provided by Windows.
The user can then select one of the basic colors shown, or create
a new color by clicking the Define Custom Colors button. After
closing this dialog box, the panel that had been clicked will be
the selected color. By clicking the Save button, the property
editor adds that color constant definition into its internal array
(which is then displayed by means of the list box). Clicking the

Informant Spotlight

Figure 10: The Object
Inspector displaying the
custom colors in the Color
property’s drop-down list.
OK button closes the property
editor and populates the original
Color property with the selected
color constant.

Now, if you return to Delphi’s
IDE and click on the Color
property in the Object
Inspector, the drop-down list
displays the custom colors that
were defined (see Figure 10).
These custom colors are
inserted at the top of the list
above the already-defined
color constants.

Examining the ColorEdt
Property Editor

Let’s take a closer look at the ColorEdt property editor.
The first place you can find information on creating prop-
erty editors is in the DSGNINTF.PAS file that ships with
Delphi. DSGNINTF.PAS is the principal unit of Object
Pascal source code that controls all the behavior for prop-
erty editors, from the simplest to the most complex. The
organization of Delphi’s property editors is much like the
hierarchy of its VCL; very simple property editors exist,
from which the more complex ones descend.

All we do for the ColorEdt property editor is descend from
the already existing TColorProperty. Here is the declaration
section of ColorEdt:

TRVColorProperty = class(TColorProperty)
public

procedure GetValues(Proc: TGetStrProc); override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

You can see that the property class we are deriving is
named TRVColorProperty and that it descends from
TColorProperty. There are only three areas where we alter
TColorProperty: the GetValues and SetValue procedures,
and the GetValue function.

GetValues is a procedure that the Object Inspector uses
whenever it must have a drop-down list property filled
with values. That is exactly the type of property we have
here. First, let’s examine how we modify the behavior of
GetValues:

procedure TRVColorProperty.GetValues(Proc: TGetStrProc);
var

I : Integer;
begin

for I := 0 to RVColorsList.Count-1 do
Proc(FirstHalf(RVColorsList[I]));
inherited GetValues(Proc);

end;

Within the ColorEdt property editor, a string list is con-
figured to hold the custom color constants that have been
15 November 1996 Delphi Informant
defined. Each of the entries defines a constant name (e.g.
clPaleBlue), followed by an equal sign (=) and the hexa-
decimal number assigned to that label. For example:

clPaleBlue=$00FFFF80

Notice that GetValues expects a passed-in parameter of
TGetStrProc. The Object Inspector is passing in a pointer to a
procedure that it’s using to populate the list box. All that needs
to be done is to call the passed-in procedure once for each of the
custom colors in our list. The code simply runs through
RVColorsList and passes the left side of the string (everything up
to, but not including, the equal sign) to the passed-in procedure.
To simplify the appearance of this code, the FirstHalf function
was created. It simply accepts a color constant item as above, and
strips the color name on the left side of the equal sign.

If that was all that was done, we would see only our custom col-
ors. Because we have overridden the GetValues procedure, we
need to duplicate the original work necessary to put in all of
Delphi’s standard color values. In this case, it’s a simple matter of
calling the inherited GetValues procedure from TColorProperty.

Next, the GetValue function was altered. This function,
although named similarly to the procedure GetValues, serves a
very different purpose. Whenever Delphi has a TColor value
that it needs to convert to a color name, it uses GetValues.
Because the GetValue function that came with TColorProperty
is not aware of our custom color scheme, we must make
some modifications here as well:

function TRVColorProperty.GetValue: string;
var

I : Integer;
begin

if not ColorToIdent(GetOrdValue, Result) then
begin

for I := 0 to RVColorsList.Count-1 do
if StrToInt(SecondHalf(RVColorsList[I]))=

GetOrdValue then
begin

Result := FirstHalf(RVColorsList[I]);
Exit;

end;
FmtStr(Result, '$%.8x', [GetOrdValue]);

end;
end;

When Delphi has a TColor value that must be converted, it
calls this function. First, the program calls Delphi’s
ColorToIdent function that looks up TColor values that
Borland already defined in the Graphics unit. The
GetOrdValue function is declared in the DsgnIntf unit and
returns the numeric representation of a property. If
ColorToIdent finds the color constant (i.e. if it’s one of the
stock colors) then GetValue returns the string representation
of the color in Result. If it’s not found, however, we need to
look through our string list (RVColorsList) to see if it’s a cus-
tom color. If it’s not found in that string list, then we need to
take the numeric value of the color and format it into hexa-
decimal notation (just as Delphi always does with unrecog-
nized colors). All that was changed here is the section that
searches RVColorsList. The rest is the code in TColorProperty.

Figure 11: The SetValue procedure.

procedure TRVColorProperty.SetValue(const Value: string);
var

NewValue : Longint;
CurrentValue : string;
RVColorDialog : TRVColorDialog;

begin
if IdentToColor(Value, NewValue) then

SetOrdValue(NewValue)
else

if Value <> '' then
begin

CurrentValue := RVColorsList.Values[Value];
if CurrentValue <> '' then

SetOrdValue(StrToInt(CurrentValue))
else

if (UpperCase(Copy(Value,1,2)) = 'CL') or
(Value[1]='?') then

begin
RVColorDialog := TRVColorDialog.Create(Application);
try

with RVColorDialog do begin
if Value[1] <> '?' then

edtColorConstant.Text := Value
else

edtColorConstant.Text := '';
pnlColor.Color := clWhite;
if ShowModal = mrOK then

SetOrdValue(pnlColor.Color);
end;

finally
RVColorDialog.Free;

end;
end

else
inherited SetValue(Value);

end
else

inherited SetValue(Value);
end;

Informant Spotlight

Figure 12: The final pieces of code in the COLOREDT.PAS unit.

procedure LoadCustomColorsFromIni;
begin

RVColorsList.Clear;
ColorINI := TIniFile.Create('RVCOLORS.INI');
ColorINI.ReadSectionValues('Custom Colors',RVColorsList);
ColorINI.Free;

end;

procedure SaveCustomColorsToIni;
var

I : Integer;
begin

ColorINI := TIniFile.Create('RVCOLORS.INI');
ColorINI.EraseSection('Custom Colors');
for I := 0 to RVColorsList.Count-1 do

ColorINI.WriteString('Custom Colors',
FirstHalf(RVColorsList[I]),
SecondHalf(RVColorsList[I]));

ColorINI.Free;
end;

initialization
RVColorsList := TStringList.Create;
LoadCustomColorsFromIni;

finalization
SaveCustomColorsToIni;
RVColorsList.Free;
Now we’ll discuss the last of the three modifications: the pro-
cedure SetValue, the exact opposite of GetValue. It takes a
color label (such as clOrange) and converts it into the color
constant that is defined in Figure 11.

SetValue is just a little more complicated than GetValue.
First, we see if the color label is one that is already defined
by Delphi. The IdentToColor function is used to make this
determination. If so, SetValue ends and uses SetOrdValue
to pass the numeric value of the color back to the Object
Inspector.

If it’s not a standard color, then we again need to look
into the RVColorsList string list to see if the color label is
defined as one of our custom colors. Again, if it’s found,
the procedure exits and returns the selected value back to
the Object Inspector by means of the SetOrdValue proce-
dure. However, if it isn’t, we need to check whether the
user is typing in a new custom color, or wants to see the
ColorEdt dialog box.

As mentioned before, we had established that if a string
value was entered and wasn’t recognized, but began with
the letters cl, then the property editor dialog box is dis-
played. In addition, if the string value entered was a ques-
tion mark, the dialog box is also displayed. If the user
16 November 1996 Delphi Informant
closes the property editor dialog box by clicking OK, then
the color that was selected is used by SetValue and is
passed back to the Object Inspector.

Another interesting behavior of ColorEdt is that it does not
interfere with the normal behavior of the Color property. If
you double-click on the Color property, you still get Delphi’s
Color dialog box.

Finishing Touches
Finally, we had to instruct the property editor to save these
custom colors somewhere, and to restore them each time
Delphi was restarted. The simplest way was to use an .INI
file. At the bottom of the COLOREDT.PAS file we see the
code shown in Figure 12.

The initialization and finalization sections of the code may
be new to some of you. The code in the initialization section
of a unit is executed once when the application starts. The
code in the finalization section of a unit is likewise executed
once, when the application closes.

These two sections are used to load and save the custom colors
to the .INI file. When the program starts, the string list
RVColorsList is created. Then the LoadCustomColorsFromIni pro-
cedure is called to populate this string list. When the application
shuts down, the SaveCustomColorsToIni procedure writes out the
custom colors and disposes of the RVColorsList string list.

Conclusion
Because of space limitations, a discussion of how the
ColorEdt property editor dialog box functions is beyond the
scope of this article. However, all of its features are fairly

Informant Spotlight
straightforward and are covered in the accompanying source
code. You may want to examine some of the more interest-
ing aspects of this dialog box, e.g. how the owner-draw list
box is built.

The simple function AdjustColor shows an easy way of scal-
ing color brightness, but the principles involved can easily
be extended into additional types of color manipulation.
For example, you could provide a function that decreases
the blue component, while increasing the green component.

These techniques of manipulating Delphi’s color constants
demonstrate more of Delphi’s easy-to-implement graphics
capabilities. Just like fingerpainting, the possibilities are limit-
ed only by your artistic flair. ∆

The demonstration files referenced in this article are available on
the Delphi Informant Works CD located in
17 November 1996 Delphi Informant

INFORM\96\NOV\DI9611RV.

Robert Vivrette is a Senior Programmer/Analyst for Pacific Gas & Electric and
Technical Editor for Delphi Informant. He is also author of a free, online journal,
The Unofficial Newsletter of Delphi Users, that can be found at
http://www.informant.com/undu. He can be reached on CompuServe at
76416,1373 (on the Internet, use 76416.1373@compuserve.com).

18 November 1996 Delphi Informant

OP Tech
Delphi 2 / Object Pascal

By Ray Lischner

Subproperty Editors
Undocumented Tricks for Creating Surrogate
Components
You’re finishing a nifty new calendar component. All you need to complete
your finest work is a property editor that lets the user choose the date the

calendar displays. You consult the Component Writer’s Guide and find the
paSubProperties flag. Great! It’s just what you want. The user can double-click
the Date property to expose the Day, Month, and Year properties.
But, how do you create the subproperty edi-
tors? The short answer is ... you can’t. The
only property editors that can have subprop-
erties are TClassProperty and TSetProperty
(and their subclasses). If you want to define
subproperties for any other type of property,
such as TDateTime, you’re out of luck.

Or are you? Through a little clever program-
ming, you can create fake subproperties. This
article instructs you how to create subproper-
ty editors for any type of property.

Subproperty Review
Let’s quickly review properties and subprop-
erties. The Object Inspector displays the
published properties of a component. When
you write a custom component, you can also
supply property editors to make it easier to
use your component at design time. You can
also write property editors for any of the
standard components, and you can replace
standard property editors with your own.

Every property has a type — specifically, an
integer, floating point (except Real), enumer-
ated, set, character, class, method, or string.
In Delphi 2, you can also have Variant or
WideChar properties. Each property has a
property editor, which is an instance of the
class TPropertyEditor, or one of its subclasses.
Delphi defines a property editor class for
every type, and you can register a property
editor class for a specific property, or any
property of a particular type.

Properties can in turn have their own proper-
ties, just as components have properties. A
property of a property is called a subproperty,
as illustrated in Figure 1. In the pre-defined
property editors, the only uses for subproper-
ties are in set and class properties. A set’s sub-
properties are the set elements, which use the
TSetElementProperty editor. The subproper-
ties of a class property are the published
properties of the class.

Figure 2 illustrates class and set subproperties
for the TFont class and the TFontStyles set
type. There are other uses for subproperties,
though. For example, your new calendar
component would be easier to use if the Date
property had subproperties for its constituent
Day, Month, and Year. This is a natural use
for subproperties. Unfortunately, Delphi
hides the pieces necessary to define your own
subproperties.

Why Subproperties Are Hard to Define
It’s instructive to see how Delphi hides the

Figure 1: Properties with subproperties.

OP Tech

TLabel component

Caption
property

Height
property

Font
property

Color
property

Height
property

FontStyles
property

fsBold
property

fsStrikethru
property

fsUnderline
property

fsItalic
property

Properties of TLabel

Subproperties of Font

Subproperties of FontStyles

Figure 2: The Object
Inspector displaying subprop-
erties.
subproperty feature, if only as
a lesson in how not to design
object-oriented software.
When the paSubProperty
attribute is set, the Object
Inspector calls the GetProperty
routine. The property editor
overrides this method to cre-
ate a property editor for each
subproperty. There’s the rub.
You can’t create an instance of
a property editor.

It turns out the base class
TPropertyEditor declares its
Create constructor in its pri-
vate section, not protected.

This means you can never create a valid instance of any class
derived from TPropertyEditor. Sure, you could call
TObject.Create to create an instance, but it would not be
valid. Only TPropertyEditor can set the Designer property,
which it does in its constructor.

So how does the Object Inspector create its property editors?
The same way you do — by calling GetComponentProperties.
This routine, shown in Figure 3, is the only way to create a
property editor object. The only problem is that it creates a
property editor for every property of a component. This is
fine for the Object Inspector, but a subproperty is different.
19 November 1996 Delphi Informant
It is not a real property of a component, so
GetComponentProperties cannot create a property editor for a
subproperty.

Object Pascal honors private declarations in units that use
the unit where the class is declared. Any code in the same
unit as TPropertyEditor (such as TSetProperty and
TClassProperty) can refer to the private fields of
TPropertyEditor. This allows developers to create mutually
cooperating classes, such as the property editors, but it also
allows sloppy programming, such as making the constructor
private, not protected.

Use a Surrogate Component
Now you know what you can’t do. So what can you do? You
can derive a class from TSetProperty or TClassProperty, and let
the parent class handle the subproperties for you. If you want
to define subproperties for a type other than a set or class
type, then you need to fake out Delphi. You can create a
property editor that looks like it has subproperties to the user.
The way to accomplish this trick is to define a hidden compo-
nent whose published properties are the desired subproperties.

Let’s look at how to define a surrogate component for
TDateTime that would allow users to set the parts of a date
and time in the Object Inspector, while still allowing for con-
venient use in the component’s code. This example creates a
subproperty for all the constituent parts of the TDateTime
class. It’s a simple exercise to create a property editor for just

Figure 3 (Top): Declaration of GetComponentProperties.
Figure 4 (Bottom): Declaration for the surrogate date and time
component.

type
{ Define a unique type identifier for each constituent

part. The default property editors limit the input to
the specified range. You can also supply custom
property editors, like TS_PropMonthProperty. }

TS_PropDateTimeDay = 0..31;
TS_PropDateTimeMonth = 0..12;
TS_PropDateTimeYear = Integer;
TS_PropDateTimeHour = 0..23;
TS_PropDateTimeMinute = 0..59;
TS_PropDateTimeSecond = 0..59;
TS_PropDateTimeMilliSec = 0..999;

{ Pseudocomponent that is used to create subproperty
editors for the constituent parts of a TDateTime. }

TS_PropDateTime = class(TComponent)
private

{ Cache the Date/Time property value. }
fDateTime: TDateTime;
{ Pointer back to the property editor. }
fEditor: TS_DateTimeProperty;
function GetDay: TS_PropDateTimeDay;
function GetMonth: TS_PropDateTimeMonth;
function GetYear: TS_PropDateTimeYear;
function GetHour: TS_PropDateTimeHour;
function GetMinute: TS_PropDateTimeMinute;
function GetSecond: TS_PropDateTimeSecond;
function GetMilliSec: TS_PropDateTimeMilliSec;
procedure SetDay(Value: TS_PropDateTimeDay);
procedure SetMonth(Value: TS_PropDateTimeMonth);
procedure SetYear(Value: TS_PropDateTimeYear);
procedure SetHour(Value: TS_PropDateTimeHour);
procedure SetMinute(Value: TS_PropDateTimeMinute);
procedure SetSecond(Value: TS_PropDateTimeSecond);
procedure SetMilliSec(Value: TS_PropDateTimeMilliSec);
procedure SetDateTime(Value: TDateTime);

public
property DateTime: TDateTime read fDateTime

write SetDateTime;
property Editor: TS_DateTimeProperty read fEditor

write fEditor;
published

{ Declare the properties in the order they should be
shown to the user. TS_DateTimeProperty preserves the
declaration order. }

property Year: TS_PropDateTimeYear read GetYear
write SetYear;

property Month: TS_PropDateTimeMonth read GetMonth
write SetMonth;

property Day: TS_PropDateTimeDay read GetDay
write SetDay;

property Hour: TS_PropDateTimeHour read GetHour
write SetHour;

property Minute: TS_PropDateTimeMinute read GetMinute
write SetMinute;

property Second: TS_PropDateTimeSecond read GetSecond
write SetSecond;

property MilliSec: TS_PropDateTimeMilliSec
read GetMilliSec write SetMilliSec;

end;

procedure GetComponentProperties(
Components: TComponentList; Filter: TTypeKinds;
Designer: TFormDesigner; Proc: TGetPropEditProc);

OP Tech

{ Return the year part of the DateTime. }
function TS_PropDateTime.GetYear: TS_PropDateTimeYear;
var

Year, Month, Day: Word;
begin

DecodeDate(DateTime, Year, Month, Day);
Result := Year;

end;

{ Return the hour part of the DateTime. }
function TS_PropDateTime.GetHour: TS_PropDateTimeHour;
var

Hour, Minute, Second, MilliSec: Word;
begin

DecodeTime(DateTime, Hour, Minute, Second, MilliSec);
Result := Hour;

end;

{ Set the year part of the DateTime. }
procedure TS_PropDateTime.SetYear(

Value: TS_PropDateTimeYear);
var

Year, Month, Day: Word;
begin

DecodeDate(DateTime, Year, Month, Day);
DateTime := EncodeDate(Value, Month, Day) +

Frac(DateTime);
end;

{ Set the hour part of the DateTime. }
procedure TS_PropDateTime.SetHour(

Value: TS_PropDateTimeHour);
var

Hour, Minute, Second, MilliSec: Word;
begin

DecodeTime(DateTime, Hour, Minute, Second, MilliSec);
DateTime := EncodeTime(Value, Minute, Second, MilliSec) +

Int(DateTime);
end;

Figure 5: Getting and setting part of a date and time.
the date or time part of TDateTime. This is left as an exercise
for the reader.
20 November 1996 Delphi Informant
First, you need to define a component as shown in Figure 4.
The component has published properties for the constituent
parts of a date and time. Only the property editor creates an
instance of the component class, so no one ever places this
component on a form. The TS_PropDateTime class is a trick
class, useful only when implementing a property editor.

You must declare the TS_PropDateTime types, because a prop-
erty’s type must be declared with an identifier. General type
specifications are not allowed by Object Pascal. In this situation,
it’s helpful to use unwieldy names that won’t clash with names
in other units.

The definition of these methods is straightforward, using
Delphi’s encode and decode routines. Just be sure that when
you set part of the date and time, you don’t accidentally alter
the other parts. Because all the routines are similar, only some
are shown in Figure 5. The source code that accompanies this
article contains the full class definition. When rebuilding the
date and time, remember that the date is the integer part, so
the encoded time is added to Int(DateTime), and the
encoded date is added to Frac(DateTime).

When the date and time are set, the property editor must be
informed of the new value. This happens in the SetDateTime

Figure 6: Setting the date and time and updating the property
editor.

Figure 8: Setting and getting the value of TS_DateTimeProperty.

Figure 7: Declaration of TS_DateTimeProperty.

type
{ The property editor for TDateTime. It creates a hidden

object and property editor just to access the subproperty
editors of the hidden property editors, pretending that
they are subproperties of TS_DateTimeProperty. }
TS_DateTimeProperty = class(TFloatProperty)
private

SubProps: TList; { Sorted list of subproperties. }
ChildList: TComponentList; { List of hidden objects. }
procedure GetSubProps(PropEdit: TPropertyEditor);
procedure SetChildValues;

public
destructor Destroy; override;
function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;
procedure GetProperties(

Proc: TGetPropEditProc); override;
procedure SetDateTime(Value: TDateTime);

end;

{ Return the property editor attributes, including
paSubProperties. }

function TS_DateTimeProperty.GetAttributes :
TPropertyAttributes;

begin
Result := inherited GetAttributes + [paSubProperties];

end;

{ The value 0.0 is not a valid TDateTime (month=0, day=0),
so just use an empty string. }

function TS_DateTimeProperty.GetValue: string;
begin

if GetFloatValue = 0.0 then
Result := ''

else
Result := DateTimeToStr(GetFloatValue)

end;

{ Set the date/time value from the string Value. }
procedure TS_DateTimeProperty.SetValue(

const Value: string);
begin

if Value = '' then
SetFloatValue(0.0)

else
SetFloatValue(StrToDateTime(Value));

SetChildValues;
end;

{ When the user changes a constituent part of the DateTime,
notify the master property editor, so it can update the
property value string. As per standard property editor
usage, changing a property value sets the value for all
selected property editors. }

procedure TS_PropDateTime.SetDateTime(Value: TDateTime);
begin

if fDateTime <> Value then
begin

fDateTime := Value;
if Editor <> nil then

Editor.SetDateTime(Value);
end;

end;

OP Tech

Figure 9: Using the list of child components for
TS_DateTimeProperty.

{ Destroy the property editor and free its list
of hidden components. }

destructor TS_DateTimeProperty.Destroy;
begin

ChildList.Free;
inherited Destroy;

end;

{ Update all the hidden, child property editors, if any. }
procedure TS_DateTimeProperty.SetChildValues;
var

I: Integer;
begin

if ChildList <> nil then
for I := 0 to ChildList.Count-1 do

TS_PropDateTime(ChildList[I]).DateTime :=
GetFloatValueAt(I);

end;

{ When Date/Time changes, notify all hidden components. }
procedure TS_DateTimeProperty.SetDateTime(Value: TDateTime);
begin

SetFloatValue(Value);
SetChildValues;

end;
procedure (see Figure 6). The property editor creates an
instance of the surrogate component, and calls
GetComponentProperties to retrieve the component’s property
editors as though they were subproperty editors. Because the
user can select multiple components, the property editor
must create a TS_PropDateTime component for each compo-
nent selected by the user.

Figure 7 shows the TS_DateTimeProperty editor. The list
of surrogate components is stored in the ChildList field.

Get Set
Implementing the new GetValue and SetValue functions is
easy, as shown in Figure 8. A zero date time is displayed as
an empty string, because it’s not a valid TDateTime value.
Similarly, an empty string is stored as a zero TDateTime
value. You must also override GetAttributes to set the
paSubProperties attribute.

When the TDateTime value changes in the property edi-
tor, the SetValue method calls SetChildValues. This notifies
the surrogate components of the new value. When the
property editor is destroyed, the list of child components
must also be freed. You have already seen that when any
child component’s value changes, the component notifies
21 November 1996 Delphi Informant
the property editor by calling the SetDateTime method.
This method, in turn, propagates the change to the other
child components. These methods are shown in Figure 9.

The hard part is having the Object Inspector request the
subproperties by calling the GetProperties method. If the
user has edited the subproperties earlier, the list of surro-
gate components already exists. If it doesn’t exist, it’s creat-
ed. Because the user can select multiple components, each
with a different TDateTime value, every TS_PropDateTime

OP Tech

Figure 10: Getting the subproperties for TS_DateTimeProperty.

{ When the Object Inspector requests the subproperties, it
is time for TS_DateTimeProperty to do its thing. Create a
hidden TS_PropDateTime object to parallel each component
that is currently selected. Then request the property
editors for the hidden TS_PropDateTime objects. Unfortu-
nately, GetComponentProperties sorts the properties
alphabetically, which makes the subproperties more dif-
ficult to use. Instead, use the property's run-time type
info (TPropInfo) to get its NameIndex. The NameIndex
gives the order in which properties are declared, which
is the order in which these particular properties should
be shown to the user. }

procedure TS_DateTimeProperty.GetProperties(Proc:
TGetPropEditProc);
var

PropDateTime: TS_PropDateTime;
I: Integer;

begin
if ChildList <> nil then

SetChildValues
else

begin
ChildList := TComponentList.Create;
for I := 0 to PropCount-1 do begin

PropDateTime := TS_PropDateTime.Create;
PropDateTime.DateTime := GetFloatValueAt(I);
PropDateTime.Editor := Self;
ChildList.Add(PropDateTime);

end;
end;

SubProps := TList.Create;
try

{ Build a list of subproperty editors,
in declaration order. }

GetComponentProperties(ChildList, [tkInteger],
Designer, GetSubProps);

for I := 0 to SubProps.Count-1 do
{ The subproperty editor list has holes for

Name and Tag. Skip them. }
if SubProps[I] <> nil then

Proc(TPropertyEditor(SubProps[I]));
finally

SubProps.Free;
SubProps := nil;

end;
end;

{ Discard property editor for Tag, so only the ones that
are specific to date and time are shown to the user. }

procedure TS_DateTimeProperty.GetSubProps(
PropEdit: TPropertyEditor);

var
Index: Integer;

begin
if CompareText(PropEdit.GetName, 'Tag') = 0 then

PropEdit.Free
else

begin
{ Keep the sub property editors in

declaration order. }
Index := TExposePropertyEditor(PropEdit).NameIndex;
if Index >= SubProps.Count then

SubProps.Count := Index+1;
SubProps[Index] := PropEdit;

end;
end;

Figure 11: Exposing a protected method with
TExposePropertyEditor.

{ Typecast any property editor to TExposePropertyEditor to
expose the property's NameIndex fields from the PropInfo.
This is just a clever hack to gain access to an otherwise
protected field of TPropertyEditor. }

type
TExposePropertyEditor = class(TPropertyEditor)
public

function NameIndex: Integer;
end;

function TExposePropertyEditor.NameIndex: Integer;
begin

Result := GetPropInfo^.NameIndex
end;
component is initialized with the TDateTime value for its
respective component. The surrogate components also
point back to the property editor, so they can propagate
22 November 1996 Delphi Informant
value changes. The ChildList field holds the list of surro-
gate components.

The GetProperties method must issue a callback procedure
for each subproperty editor. Start by calling
GetComponentProperties, which creates and initializes the
property editors for the subproperties. Set the filter to
tkInteger, so GetComponentProperties returns property edi-
tors only for the integer-type properties. All the con-
stituent date and time properties are integers, but so is the
Tag property. Remove the Tag property by looking at its
name and freeing the property editor if it is Tag.

All in Order
By default, these property editors are sorted in alphabetical
order (Day, Hour, MilliSec, Minute, Month, Second, Year). They
are most useful, however, when they are ordered by magnitude
(i.e. Year, Month, Day, Hour, Minute, Second, MilliSec), so you
should rearrange them. Thus, GetSubProps stores the property
editors in a list, SubProps. The index of each property editor in
the list is given by the editor’s NameIndex, which is its index in
declaration order. Remember that in TS_PropDateTime, the
order of the published properties is the same order the Object
Inspector should use. This leaves holes in the list (e.g. for Tag),
so skip over any nil items in the list.

After the list is built, issue the callback procedure Proc for
each subproperty. The Object Inspector can then display the
property values for the subproperties. Figure 10 shows the
GetProperties and GetSubProps methods.

Into the RTTI
The NameIndex field is part of the Run-Time Type
Information (RTTI) for a property, in the TPropInfo record.
(This information is not documented, but you can learn
about it in the TypInfo.int or TypInfo.pas file. Look in
Delphi’s \Source or \Doc directory.) The GetPropInfo method
returns a pointer to the TPropInfo record for the property.

Unfortunately, the GetPropInfo method is protected in
TPropertyEditor. For TS_DateTimeProperty to get the prop-
erty information, it must be able to call a protected
method. Figure 11 shows the trick that exposes the

{ A special property editor for the month. }
type

TS_MonthProperty = class(TIntegerProperty)
public

function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;
procedure GetValues(Proc: TGetStrProc); override;

end;

{ Add a value list, with all the month names. }
function TS_MonthProperty.GetAttributes:

TPropertyAttributes;
begin

Result := inherited GetAttributes + [paValueList]
end;

{ Get the value string by looking up the month number. }
function TS_MonthProperty.GetValue: string;
begin

Result := LongMonthNames[GetOrdValue]
end;

{ Set a new value by looking up the month name. If it’s not
found, call the inherited SetValue to convert the integer
value. Check the long and short month names. }

procedure TS_MonthProperty.SetValue(const Value: string);
var

Month: Integer;
begin

for Month := Low(LongMonthNames)
to High(LongMonthNames) do

if CompareText(Value, LongMonthNames[Month]) = 0 then
begin

SetOrdValue(Month);
Exit;

end;

for Month := Low(ShortMonthNames)
to High(ShortMonthNames) do

if CompareText(Value, ShortMonthNames[Month]) = 0 then
begin

SetOrdValue(Month);
Exit;

end;

inherited SetValue(Value);
end;

{ Retrieve all the month names, for the value list. }
procedure TS_MonthProperty.GetValues(Proc: TGetStrProc);
var

I: Integer;
begin

for I := Low(LongMonthNames) to High(LongMonthNames) do
Proc(LongMonthNames[I]);

end;

Figure 12: Editing a month by name with TS_MonthProperty.

Figure 14: The unit S_Test.pas used to test the TDateTime prop-
erty editor.

unit S_Test;

{ Test components for demonstrating property editors. }

interface

uses
SysUtils, Classes, DsgnIntf;

type
TS_DateTimeTester = class(TComponent)
private

fDateTime: TDateTime;
public

constructor Create(Owner: TComponent); override;
published

property FancyDateTime: TDateTime read fDateTime
write fDateTime;

property DateOnly: TDateTime read fDateTime
write fDateTime;

end;

implementation

{ An object is initialized to zero, but that is not a valid
TDateTime value, so initialize the TDateTime to something
that makes sense, such as the current date and time. }

constructor TS_DateTimeTester.Create(Owner: TComponent);
begin

inherited Create(Owner);
SimpleDateTime := Now;

end;

end.

OP Tech
NameIndex field. By casting any property editor to
TExposePropertyEditor, you can call the NameIndex method.
Because TExposePropertyEditor derives from TPropertyEditor,
it can call a protected method, such as GetPropInfo. Because
the NameIndex method is not virtual, there is no problem
with the fact that the property editor object does not derive
from TExposePropertyEditor.

Not without Risk
However, a warning is in order. If you were to use the as oper-
ator to cast the property editor to TExposePropertyEditor,
Delphi would raise a run-time exception. Thus, this is a dan-
23 November 1996 Delphi Informant
gerous trick, and you should use it
only in specific circumstances. In
the right situation, however, it is a
powerful technique, and one that
makes the TS_DateTimeProperty
class feasible.

Putting It to Use
Remember that the purpose of
adding subproperty editors to the
date/time property editor is to
make it easier for the user to set a
date and time. It is simplest to
choose a month by name, not by
number. Thus, you can define the TS_MonthProperty editor,
as shown in Figure 12.

Now that the TS_DateTimeProperty editor is complete,
how is it used? Again, quite simply! Remember that this
property editor will apply to any property of type
TDateTime. Therefore, all you need to do is add a new
property for a component that is of type TDateTime, and
the TS_DateTimeProperty will automatically provide the
property editor for it.

Figure 13 shows the new TS_DateTimeProperty editor in
use. Notice how easy it is to enter a specific date or time
by entering the constituent parts. Figure 14 shows the unit
S_Test.pas used to test the TS_DateTimeProperty editor.

Figure 13: An example of
the TS_DateTimeProperty
editor in use.

OP Tech
Conclusion
Delphi makes it difficult to create subproperties for arbitrary
property types, but it is possible. You can create a surrogate
component that defines the desired subproperties. The parent
property editor creates an instance of the surrogate compo-
nent, and pretends that the component’s properties are its
own subproperties. With a little extra work to ensure the par-
ent property editor and the subproperty editors communicate
their changes, you can complete the illusion that your prop-
erty has subproperties. And users never know about the
magic that takes place behind the scenes. ∆

This article is based on material for Ray Lischner’s Secrets
of Delphi 2 [Waite Group Press, 1996]. The book is avail-
able for US$49.99 from your local bookstore, or by calling
(800) 428-5331.

The demonstration source referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\NOV\DI9611RL.
24 November 1996 Delphi Informant

Ray Lischner is a software author and consultant for Tempest Software
(http://www.tempest-sw.com). His current focus is object technology, especially in
Delphi, Java, and Smalltalk. You can reach him at delphi@tempest-sw.com.

25 November 1996 Delphi Informant

DBNavigator
Delphi 1 / Delphi 2

By Cary Jensen Ph.D.

Cross-Platform Delphi
or, IFDEFing for Fun and Profit
I t seems we are forever writing applications for two platforms: the one
that dominates the marketplace (currently Windows 3.1), and the one

that will (Windows 95). Specifically, Delphi programmers must be able to
move easily between the 16-bit, segmented-memory environment of
Delphi 1, and the 32-bit, flat-memory world of Delphi 2 — often with the
same application.
However, compiling 16- and 32-bit executa-
bles from one set of source requires planning,
and sometimes, compromise. This month’s
column discusses why this is increasingly so.
It also reviews some of the issues and tech-
niques you need to keep in mind when
building cross-platform applications.

Background
Delphi 2 has been available for almost nine
months. Unfortunately for Borland, the
acceptance of Microsoft Windows 95 is less
widespread than expected, especially among
large corporations. Likewise, the number of
end-users running Windows NT is relatively
small. Consequently, not many Delphi devel-
opers have been developing applications
exclusively for the 32-bit platform, which is
the only platform that can run Delphi 2. In
fact, based on my interactions with other
Delphi developers, most continue to pro-
gram exclusively in Delphi 1.

This situation won’t last forever; recent devel-
opments pave the way for an increase in 32-
bit applications. The first is the cost of RAM
and hard disk space. Because Windows 95,
and particularly Windows NT, require a lot
of both, the cost of these resources was one
obstacle preventing companies from upgrad-
ing their operating systems. Now, however,
price is not nearly as big a factor.

The second development is the release of
Windows NT 4.0. Many companies have
been waiting to make their operating system
decision based on this new release of NT.
Now that it’s available, some corporations
will upgrade to NT 4.0, while others will
decide to migrate to Windows 95.

As a result of these developments, it’s likely
most independent consultants, as well as
many corporate developers, will find them-
selves building Delphi applications that must
run on both 16- and 32-bit operating sys-
tems. Unfortunately, unlike Borland’s C/C++
product line, Delphi 2 doesn’t permit you to
compile both. Instead, a developer must
compile an application using Delphi 1 to
create a 16-bit .EXE, and again in Delphi 2
to create the 32-bit version.

Using two versions of Delphi to compile an
application in 16 and 32 bits is often more
than inconvenient. It can involve major com-
promises and time-consuming coordination.
The reason is that Delphi 2’s feature set is not

DBNavigator
only more extensive than Delphi 1’s, but there are also incom-
patibilities between the two products. While the original Delphi
1 VCL (Visual Component Library), and RTL (run-time
library) were designed to be compilable on 16- or 32-bit operat-
ing systems, the same is not entirely true of Delphi 2’s VCL.

What to Do?
The following is a list of considerations, potential problems,
and possible solutions that you can use when you need to
build a cross-platform application.

Use Delphi 1 to design and maintain the application. Start
by using only those components shared by Delphi 1 and 2.
One way to ensure this is to do all your design work in
Delphi 1; every component available in Delphi 1 is available
in Delphi 2. While this may result in a 32-bit application
that looks more like a Windows 3.x application, it prevents
you from maintaining two sets of source files.

Another reason to do all your design work in Delphi 1 is that
it prevents Delphi 2 from storing properties in the DFM file
that aren’t in the Delphi 1 version. If you accidentally modify
a project under Delphi 2 and it adds a property to the DFM
file, you’ll see an error message when you attempt to load
that application in Delphi 1. (You can usually get around this
by instructing Delphi 1 to ignore the error. As long as you do
not need that property — in which case the application can-
not be compiled with Delphi 1 — the next time you compile
the application in Delphi 1, it will remove the unnecessary
property from the DFM file.)

Avoid non-Delphi objects. Avoid using objects that aren’t
native Delphi components. Specifically, do not use VBXes,
OCXes, or ActiveX controls. VBXes are only supported
under Windows 3.x, while OCXes and ActiveX controls are
supported only under Windows 95 and Windows NT.

Be aware of data type ambiguities. Avoid code that is sensi-
tive to the size and range of platform-dependent data types.
For example, don’t write code that assumes an integer will be
either 16- or 32-bit. (This includes strings, which we’ll dis-
cuss shortly.)

Use conditional compiles. Use compiler directives to condi-
tionally compile code that can only be compiled under one
platform or the other. For example, the following statement
checks the pre-defined conditional symbol, WIN32, and then
declares the variable InitStorage as a TIniFile type in Delphi
1, or a TRegIniFile type in Delphi 2, accordingly:

{$IFDEF WIN32}
var

InitStorage: TRegIniFile;
{$ELSE}
var

InitStorage: TIniFile;
{$ENDIF}

Another location where conditional compiler directives can
be useful regards the inclusion of units in uses clauses. For
26 November 1996 Delphi Informant
example, while the TRegIniFile class is defined in the Registry
unit, the TIniFile class is defined in the IniFiles unit.
Sometimes, however, you may find that including a condi-
tional compiler directive in the middle of a uses clause will
generate a compiler error. Specifically, sometimes a statement
like the following will not compile:

uses
SysUtils, WinTypes, WinProcs, Messages,
{$IFDEF WIN32}
Registry,
{$ELSE}
IniFiles,
{$ENDIF}
Classes, Graphics, Controls, Forms, Dialogs;

In those cases, make the entire uses clause conditional:

{$IFDEF WIN32}
uses

SysUtils, WinTypes, WinProcs, Messages, Registry,
Classes, Graphics, Controls, Forms, Dialogs;

{$ELSE}
uses

SysUtils, WinTypes, WinProcs, Messages, IniFiles,
Classes, Graphics, Controls, Forms, Dialogs;

{$ENDIF}

Be careful with strings. The default string type in Delphi 2 is
an ANSIString, while the default string type in Delphi 1 is
comparable to Delphi 2’s ShortString. These string types are not
compatible. There are two ways to get around this problem.

One is to explicitly declare the length of a string to be 255
characters or less using the string[nnn] syntax. For exam-
ple, even in Delphi 2, the following statement will declare the
string variable MyString to be of type ShortString:

var
MyString: string[30];

The second technique is to conditionally include the {$H-}
compiler directive under Delphi 2. The {$H-} compiler
directive instructs Delphi 2 to use ShortString by default. You
must execute this statement conditionally, because {$H-} will
produce a compile error in Delphi 1:

{$IFDEF WIN32}
{$H-}
{$ENDIF}

Watch those DLLs. 16- and 32-bit DLLs are not compati-
ble, so you’ll need to create and compile them separately.
DLLs created for Windows 95 should use the stdcall direc-
tive for compatibility with other 32-bit DLLs. This direc-
tive takes the place of the export directive used in Delphi 1.
[For an in-depth discussion of this topic (and many others),
see Ray Lischner’s article “Classy DLLs” in the October
1996 Delphi Informant.]

Watch unit size. Remember that Delphi 1 can’t use units
over 64KB. Delphi 2 has no such limit. This is why Delphi 1
uses two units to provide the Windows 3.x interface:

Figure 1:
The Library
page of the
Environment
Options
dialog box.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor to Delphi
Informant. You can reach Jensen Data Systems at (713) 359-3311, or via

DBNavigator
WinProcs and WinTypes. Delphi 2 uses a single unit,
Windows, for this purpose. This is one more reason you
shouldn’t create your cross-platform applications in Delphi 2;
Delphi 2 will add the Windows unit to the interface uses
clause, and Windows is not defined for Delphi 1.

However, Delphi 2 still recognizes WinProcs and WinTypes.
It does this through the Unit aliases definition found on the
Library page of the Environment Options dialog box (see
Figure 1). Notice that this field includes the statement
WinTypes=Windows. This instructs Delphi 2 to use the
Windows unit any time it sees a reference to WinTypes in a
uses clause.

Watch those resource files. 32-bit resources are not compati-
ble with 16-bit resources. You will need to compile these
resource files separately for each platform. You can compile a
resource script into a 16-bit resource file with the
BRCC.EXE version of the Borland Resource Compiler. Use
Delphi 2’s BRCC32.EXE to compile resource scripts into 32-
bit resources.

Beware of Windows API calls. Some of the Windows 3.1
API calls have been changed or made obsolete in Windows
95. If you need to make explicit API calls, make sure they are
compatible. Again, this is a place where conditional compiler
directives can be helpful.
27 November 1996 Delphi Informant
Provide a uniform look. Delphi 2 applications use a smaller,
lighter-weight font than Delphi 1 applications. If you want to
change a Delphi 1 application to have a look similar to that
of Delphi 2, use the Object Inspector to set the Font property
of each form to MS San Serif, Regular style, 8 point. All
objects on that form whose ParentFont property are set to
True will then use that font.

Respond to
“Duplicate
resource”
errors. When
opening a
project in
Delphi 1 that
was compiled
in Delphi 2,
you’ll often get the Error dialog box shown in Figure 2. It’s a
common error that simply means you must rebuild the pro-
ject. Click on OK, then select Compile | Build All from the
menu. This will cause all units to recompile to 16-bit DCUs
(Delphi Compiled Units).

Conclusion
While creating a single set of source files that can be com-
piled using Delphi 1 and Delphi 2 requires some coordina-
tion, it is not particularly difficult. Furthermore, the benefit
of maintaining a single source base will usually far outweigh
the burden of making the source compatible with both
Delphi 1 and 2.

Interestingly, the two most common requests from Delphi
developers at the recent Borland Developer’s Conference were
for a single version of Delphi that can compile 16- or 32-bit
applications, and an updated version of Delphi for Windows
3.x. If either request is granted, building cross-platform appli-
cations with Delphi would be even easier. ∆

Figure 2: You’ve probably seen this one. It’s
the error message often displayed when, from
the Delphi 1 IDE, you open a project compiled
in Delphi 2.
CompuServe at 76307,1533.

28 November 1996 Delphi Informant

Columns & Rows
Delphi 2 / Object Pascal / Client/Server

By James Callan

Data of Many Shapes
or, Building Mighty Morphing Power Grids

Figure 1: QuickXpense is a good e
Polymorphism can simplify your life. This barely-pronounceable OOP
technique curbs complexity and imposes order on an otherwise chaotic

world. By shrouding diversity, polymorphism helps us build generic, endur-
ing systems. Widely believed to be a specialized technique useful only for
graphics applications or programming books, the P-word has in fact long
been used in database applications. Surprised?
This article explains how you can use inheri-
tance, polymorphism, and specialization in
your client/server applications. We’ll begin with
concrete examples of these techniques in action,
and provide a firm conceptual foundation.
Moving to database modeling, we’ll introduce
subtypes. We’ll end by creating an Extra
Sensory Perception (ESP) game that builds on
all the ideas introduced in this article, and
shows you how to add Mighty Morphing
Power Grids to your next application.

What, you may ask, are Mighty Morphing
Power Grids? They’re those super-snazzy
dual-row grids in Quicken and other “killer”
applications that visibly change, depending
on what kind of data you add. These applica-
tions use one simple form for dozens of dif-
xample of an application with morphing capabilities.
ferent kinds of transactions. Figure 1 illus-
trates one such transaction in a commercial
product named QuickXpense.

If you’re like me, you’re under a constant bar-
rage to add the latest clever features to your
projects, but what’s a software designer to do?
Lose more sleep? Drink more Jolt Cola? There’s
a better way, using — yes — polymorphism,
and Delphi makes it easier than you think.

Polly Who?
I’m amazed how academics can obfuscate.
Let’s define polymorphism simply and directly.
Literally, the term means having many forms.
In the world of objects, it means you can ask
two different objects to do the same thing,
and both will respond sanely.

Consider the following example: In the
first, big-screen “Batman” movie, Bruce
Wayne invites Vicki Vale to his mansion
for a romantic evening. Once they’re
asleep, Batman slumbers hanging upside-
down, but Vicki dozes in a bed. Here, you
have two “people” objects, each receiving a
“sleep” message. One sleeps in bed, the
other on a chin-up bar.

Strange, yet polymorphic. Batman and
Vicki Vale are both people. All people
sleep, so both are capable of sleeping.
However, there are some differences
between bats and people. Hence, the
method by which a Batman implements
the “sleep” function is different from how

Columns & Rows
an ordinary person implements “sleep.” This difference is
how each person specializes their way of sleeping.

The power of polymorphism gives client objects a common way
of dealing with server objects that share a common ancestry. For
example, all shapes have a Draw method, and all windows have
a Paint method. Polymorphism eliminates diversity in areas
where objects share similar experiences. Specialization, on the
other hand, is what permits a square to implement the Draw
method differently than the way a circle implements Draw.

Perhaps one of the best illustrations of the relationships between
polymorphism, inheritance, and specialization is to remind you
where you first encountered these very old concepts.

From Sets ...
It’s funny how every generation learns “new math.” Math is
ancient, yet we seem to constantly reinvent it. In one of the
latest reincarnations of math, grade school teachers intro-
duced Venn Diagrams to teach the concept of sets.

In a Venn Diagram, sets are represented by different, colored
ovals. The set of everything is called the universal set, desig-
nated by the letter “u”. Because everything belongs in the
universe, the universal set frames a Venn Diagram.

When we have a set of ducks and a set of geese and put them
together, we call the combined set a union. The union results
in a set of ducks and geese. Similarly, let’s say we take all
books I have read as one set, and as another set, take all the
books you have read. If we create an intersection between the
two sets, we end up with a third set that contains only the
books we both have read.

The notion of set intersections inevitably leads to the concept
of set subtraction. If there are books we both have read, and
books that each of us has read, then there must be books that
neither of us have read. These books are what remains when
we subtract our books from the set of all books. Figure 2 con-
tains a series of Venn Diagrams that illustrate these points
using the book example.
29 November 1996 Delphi Informant

Figure 2: Venn Diagrams are used to describe sets.
Some of these sets are nested within other sets. These nested
sets are called subsets. The set of all books is a superset to the
set of all books you’ve read. Similarly, the books you’ve read
are a subset of all books. Both “My Books” and “Your
Books” share a common ancestry. We could say that both
subsets inherit characteristics from their superset. Let’s exam-
ine this inheritance more closely.

Books can be read. I read with a pen in hand and tend to
make notes in the margins. When you read, however, you
may leave your books in pristine condition. Both sets of books
can respond to being read, yet the fact that their “state” is dif-
ferent after having been read can be an indication of polymor-
phism. Thus, the mere act of reading could specialize a book,
and be used to distinguish one book from another.

The subject matter covered in each book is another way of
distinguishing them — there may be many such ways. When
a characteristic (or characteristics) of an item (a.k.a. an ele-
ment) determines its membership in a set, it’s called the char-
acteristic function for the set. The characteristic function for
the set of books you have read is the test to determine
whether you have read the book.

Intuitively, we see that sets form the theoretical basis underlying
inheritance, polymorphism, and specialization. There is much
more to object-orientation than set theory, but consider the
Venn Diagrams in Figure 2 as a foundation for what follows.

... to Databases
A relational database is a collection of tables that interact
based on the principles of relational algebra (which is itself
used to manipulate sets). A well-designed database provides
rich information about the real world entities represented by
the data stored in the tables. A database is a set of tables. A
table is a collection of interesting characteristics about similar
entities — such as people, places, or things. Tables are repre-
sented by columns and rows. Each row represents one entity
(or object). A table is thus a set of characteristics of entities in
the world we are modeling.

Understanding sets is imperative to developing useful databases.
For example, you create an intersection between two sets when
you execute a SQL SELECT statement that joins two tables. As
we’ll see, sets are also critical to building powerful data grids.

The Power behind the Grids
Staring at Figure 1 probably won’t tell you a lot about the
database design that lies behind the spiffy screen. Figure 1
is only one view of a grid that changes (or morphs) based
on the type of expense being entered. For example, enter-
ing a meal expense requires different information from the
user than entering a mileage expense or that of a plane
ticket. The grid gains its power from its ability to accom-
modate different types of expenses in a single, compact,
consistent, and convenient manner. Let’s consider the
problem of how we might design a database to support
time and expenses like that shown in Figure 1.

Figure 3: An entity relation-
ship diagram (ERD).

Figure 4: A
more complex
ERD.

Columns & Rows
The first thing to notice
about this screen is that the
master source of data seems
to be the employee.
Employees enter their
expenses, and expenses are
tied to a specific employee.
This gives us one set of
relationships (they are bi-
directional) between
expenses and employees.
Based on this relationship,
we can construct the very
simple entity relationship
diagram (ERD) shown in
Figure 3. An ERD is a

standard way of analyzing data relationships. In an ERD,
boxes represent entities and lines represent the relationship
of the entities. The ERD in Figure 3 can be read as:

Each Employee may be reimbursed for expenses recorded in
one or more Expense Items, and
Each Expense Item must be a record of expense for only one
Employee.

The formalisms of the diagram nicely capture the require-
ments of the system. ERDs per se are outside the scope of
this article, but here are a few of the rules:

A single line (like that connecting the EMPLOYEE entity)
indicates that only one record can exist in the relationship.
Conversely, the line with the “crows foot” (like that con-
necting the EXPENSE LINE entity) indicates there can
be multiple records.
The line perpendicular to the line connecting the EMPLOY-
EE entity indicates there must be an EMPLOYEE entity.
The open circle on the line connecting the EXPENSE
LINE entity indicates there may be no EXPENSE LINE.

The next thing to notice about Figure 1 is that the Expense
Line morphs on the basis of the type of expense entered.
When the line morphs, it displays different fields for the
user to enter. Some fields have drop-down lists, while oth-
ers are simple edit fields. From this observation we can
conclude that certain fields (known as attributes in data
modeling parlance) are only applicable for certain types of
expenses. We can also conclude (based on drop-down
combo boxes) that certain expenses have relationships to
other entities in the system.

These two conclusions lead to extending the ERD in
Figure 3 to one that resembles Figure 4. Each type of
expense has been broken out into its own entity. Also note
that the new expense entities are contained inside the larger
Expense Line entity. These new entities are called subtypes,
and the larger “containing entities,” such as Expense Item,
are termed supertypes. Subtypes and supertypes are the data-
base equivalents of subsets and supersets.
30 November 1996 Delphi Informant
The new and improved ERD in Figure 4 may be read the
same way as the ERD in Figure 3, but with the additional
provisions that:

There are five types of Expense Lines: Airfare,
Entertainment, Mileage, Lodging, and Meal,
Each Meal Expense Line must be to annotate a business meal
with only one Customer, and
Each Customer may be referenced within one or more Meal
Expense Lines.

Clearly, we are simplifying a detailed and improved model to
illustrate a point. Figure 4 captures more of the requirements
than Figure 3. In many ways, the version in Figure 4 is also
more powerful.

Subtypes are interesting because they inherit all the relation-
ships and attributes present in their supertype. Thus, from
inheritance we know that:

Each Mileage Expense Line must be a record of expense for
only one Employee.

Subtypes in ERDs correspond precisely with persistent inherit-
ed classes (when relational databases are used for the persistent
store) in the class diagrams of all leading object-oriented design
(OOD) methodologies. Figure 4 illustrates this technique of
data inheritance. Later, we’ll develop a program that demon-
strates behavioral and data inheritance working together.

The ERD in Figure 4 can be implemented in many ways. You
could store all the expenses in one, two, or five tables. Although
the rationale to select one method over another is beyond the
scope of this article, the analysis techniques that lead to this
type of ERD are relevant to creating powerful data grids.

Making the Static Dynamic
ERDs create only a static view of the relationships between
the entities of our systems. ERDs also have limitations in
the way they move us toward presenting our data to users.
Alternative design techniques must be used. OOD tech-
niques were introduced to permit us to capture both the
static relationships and the dynamic interaction between

Columns & Rows
objects. OOD techniques can also help us model the way
we present data to users.

Ideally, we would like a common manner of dealing with our
data so that access to it can be controlled and well managed.
For now, relational databases are that common access
method. (However, good commercial object-oriented databas-
es are just over the horizon, e.g. Oracle8.) In addition to data
access, we also want a consistent way of presenting our data,
yet in a manner that supports diversity among our objects.

The expense entry grid of Figure 1 presents data consistently
(row per expense), yet it permits high variability in how data
is displayed and entered (row-to-row morphing). The power
grid is an example of what we want in our applications. And
do we need to resort to C++ to create Mighty Morphing
Power Grids? Of course not; Delphi has the power.

Subtle Power: The Best Kind
The best kind of power is the kind that goes unnoticed. I
drive a Jaguar XJS, V-12. Many people think the Jaguar is
wimpy compared to the BMW 7xx series, until they drive
one and feel its subtle power. Delphi is like this.

Delphi 2 introduced the DBCtrlGrid component as a way of
displaying multi-column data. The DBCtrlGrid provides a
data-aware, multi-column grid that allows you to place cer-
tain data-aware controls, such as DBEdit fields, into the first
grid cell. It then dynamically replicates the controls in the
other cells as needed. It’s cool, but doesn’t permit you to place
just any kind of control into the cells.

The DBCtrlGrid surfaces an OnPaintPanel event that allows
you to control the appearance of how data is displayed.
Unfortunately, this event is not very helpful in overcoming
the component-imposed limitations on what controls are
allowed on panels during data entry and editing. We need a
better way to edit in DBCtrlGrids. We need freedom in our
choice of controls, as well as a way to maintain control pro-
grammatically. We need a way to morph while editing.

Hover Editing
Because the DBCtrlGrid is tied to a DataSource component,
the Grid’s state is governed by the DataSource’s state.
Therefore, when the DataSource is in edit mode, the Grid is
in edit mode; and when the DataSource is read-only, the
Grid is read-only. What if we used a component that gives us
more flexibility when we are editing, and used the
DBCtrlGrid to display our data? Furthermore, because the
OnPaintPanel event provides the coordinates of a rectangular
region in which we can display the current record, we can
position our “editing” component directly over this region
(think of it as “hover editing”). We’ll simply stack the compo-
nents and have them collaborate.

We’ll use the ubiquitous Panel component as an editing sur-
face. Because you can place any control on it, using a Panel
brings control choice freedom. If we need to morph our panel
31 November 1996 Delphi Informant
based on the type of data entered, we can alter the visibility of
our controls, or switch panels altogether. Intuitively, this
scheme works; however, how will it look in a real application?

The Personal Psychic Network
Imagine you are the Director of Information Technology for
the world famous Personal Psychic Network (PPN). People
from all over the globe call the psychics at PPN for personal
readings (credit cards accepted). PPN’s popularity is growing,
but they have a shortage of psychics. The human resources
manager approaches you, explaining that she wants an
employment exam to help her separate the good psychics
from the “also-rans.” You propose a simple Extrasensory
Perception (ESP) exam to test for psychic aptitude.

After researching ESP, you determine that a simple program
using the ESP symbols (developed by Dr Rhine of Duke
University) will serve nicely. In his experiments, he used a
deck of cards depicting triangles, crosses, circles, waves, stars,
and squares. You’ll use an electronic deck of cards, the com-
puter will select a card, and the psychic will attempt to name
the card.

You decide to avoid text, keeping the program symbolic and
intuitive, yet colorful and inviting. Your program has seven
basic functions that allow a user to:
1) read about the program,
2) create new tests,
3) delete tests,
4) take a test by making ESP symbol selections,
5) retrieve previous tests,
6) graph their test results, and
7) exit the program.

To select a symbol, a user simply presses the corresponding
button depicting the desired symbol. After the user makes a
selection, the choice is committed. The computer immediate-
ly reveals its choice and the user’s selection, and signals a
match. The test is fair because the computer commits to all
its choices when the test begins.

Data Model
Figure 5 illustrates the data model for PPN’s Psychic
Diviner. Each ESP Test must comprise precisely 24 ESP
Trials. Each ESP
Trial must be for
only one ESP
Test.
Furthermore, each
ESP Trial is either
Non-selected,
Correct, or
Incorrect. Non-
selected means the
computer has
selected a symbol,
but the psychic
has not. Correct

Figure 5: The data model for PPN’s
Psychic Diviner.

Figure 7: Using the Image Editor to modify the shapes used in
the Psychic Diviner’s test.

Figure 8: The Psychic Diviner at design time.

Columns & Rows
and Incorrect corre-
spond to whether
the psychic and
computer match.
Notice that sub-
types are mutually
exclusive. Figure 6
illustrates the data-
base tables that cor-
respond to the ERD
in Figure 5.

Beyond the table
design, we must
define a characteristic function that will help us place each
trial record into either the Non-selected, Correct, or Incorrect
sets. Therefore, if the Choice field contains an “N” (default
during creation), the record is Non-selected. If the Choice
field matches the Choice field, then the record is Correct. If
the Choice field is not an “N” and does not match the
Choice field, the record is Incorrect.

Although our ERD is simpler than the ERD depicted in
Figure 4, and our table design is much less complex than one
needed to represent corporate expenses, our use of subtypes is
exactly the same. Instead of using an “expense type” field,
we’ll use a combination of two fields on which to build a
characteristic function. A grid display for expenses would
look different than one for ESP symbols. However, the meth-
ods are similar for painting the grids, editing within cells, and
morphing. An expense grid, or any other business grid, could
include lookup combo boxes that appear and disappear, or
other, similar morphing features.

To build your Psychic Diviner application, create the tables
shown in Figure 6 using the Database Desktop. Under Tools |

Alias Manager create a new public alias named SubTypes. Set its
path to the directory where you have stored the Tests and Trials
tables. Use the Image Editor (see Figure 7) to create 32x32 pixel
bitmaps of a red triangle, a blue cross, a lime circle, three purple
wavy lines, a yellow star, and a magenta square. (The simplest
way to create the star is to draw a pentacle and erase the interior
lines.) We’ll use the values T, C, E, W, S, and R in our Trials table
to represent each of these symbols, respectively.

Forming the Form
Start a new project. On the default form, drop two Panel com-
ponents, aligning one to the top of the form and the other to
the bottom. On the top Panel, place a DBLookupComboBox,
a DBEdit, and two Labels. Using the Object Inspector, name
the DBLookupComboBox TestNameLKUFld and the DBEdit
control TestDescriptionFld. Set the Caption property of the
first Label to Test &Name:, and the second to
&Description:. Then change their focus controls to the
DBLookupComboBox and DBEdit controls, respectively.
Make the value for the Panel’s Caption property blank and then
set its BevelOuter property to bvNone. Resize and position the
controls on the Panel to resemble Figure 8.

Figure 6: The structures of the tables for
Psychic Diviner.
32 November 1996 Delphi Informant
Next, add a MainMenu component to the form, then dou-
ble-click on it to create the form’s main menu. Using the
Menu Designer, add &File, &View, and &Help as top-level
menu options. Under File add &New and &Delete, followed
by a separator (insert a dash character for its Caption), and
E&xit. Add &Accuracy under View and set its shortcut key to
1 via the drop-down list of keys. Lastly, add an &About
option under Help, and close the Menu Designer.

On Panel2, place a third Panel and a Button. Set Panel3’s
Alignment property to taLeftJustify, its BevelOuter property to
bvLowered, and its Font.Color property to clBlue. Name the
Button OkBtn and set its Caption to &OK. Next, make sure the
Caption properties for Panel2 and Panel3 are blank. The lower
panel should now match the one in Figure 8.

On the main form, just above Panel2, drop an additional
Panel and name it EditPanel. On EditPanel, place six
BitBtn components and space them equally. Set their
Height and Width properties to 38 and make their Caption
properties blank; then set their Glyph properties to the
bitmap files that you created earlier in the Image Editor.
Set the Tag properties for the BitBtn components to 1
through 6 (we’ll use the Tags later) and name them

Columns & Rows
TriangleBtn, CrossBtn, etc. Change the EditPanel’s
Visible property to False (we’ll programmatically control
the Panel), and make its Caption blank.

Next, position a DBCtrlGrid component in the center of the
form and change its Name property to TrialsGrid. Set its
RowCount property to 5, its ColCount property to 2, and its
Color property to clBtnFace. Right-click on EditPanel, and
from the SpeedMenu, select Bring To Front. This raises the Z-
order for EditPanel above that of TrialsGrid. You can
check this by overlapping the edge of TrialsGrid with
EditPanel. EditPanel should obscure TrialsGrid.
Now set the form’s Caption property to: Personal Psychic
Network - Psychic Diviner and set its Color property to
clActiveCaption. After proper sizing, your form should look
exactly (less the non-visible components of the next section)
like the form shown in Figure 8. Now save the form as PSY-
CHIC and the project as PPNESP.

Becoming Data Aware
Next, you’ll add links to the database tables you created in
the Database Desktop. Begin by adding three DataSource
components and three Table components to the form. Set all
the Table DatabaseName properties to SubTypes. Name one
DataSource TestsDS, and set its DataSet property to the
Table you’ve named TestsTB, and for which you have set its
TableName property to TESTS. Name another DataSource
TestsLKUDS, and set its DataSet property to a Table that you
have named TestsLKUTB, and for which you have set its
TableName property to TESTS. Similarly, set up a DataSource
(TrialsDS) and Table (TrialsTB) for the Trials table. Point
the TrialsTB’s MasterSource property to TestsDS, and use
the Field Links Designer to link the TestID fields for both
tables. This sets the MasterFields property to TestID.

Set the DataSource and DataField properties for
TestNameLKUFld to TestsDS and Name, respectively. Next,
specify TestNameLKUFld’s lookup by setting its ListSource
property to TestsLKUDS, its ListField property to
Name;Description, and its KeyField to Name. Now change
TestNameLKUFld’s DropDownWidth property to 300 so the
Description field will appear in the drop-down list. After this,
set the DataSource and DataField properties for
TestDescriptionFld to TestsDS and Descrip, respectively.
Finally, set TrialsGrid’s DataSource to TrialsDS.

Our last step is to create a cascaded delete for tests. Whenever
we delete a test, we must delete all of its related trials. To
illustrate the manual method, add a Query component to the
form (named DeleteTrialsSQL), which contains this
DELETE statement in its SQL property:

DELETE FROM Trials WHERE TestID = :TestID

Set the TESTID parameter’s DataType property to Integer,
and point its DataSource to TestsDS. Now we can cascade
delete all the trials for a test by executing DeleteTrialsSQL’s
ExecSQL method.
33 November 1996 Delphi Informant
The Power Plan
The Psychic Diviner will be an unusual Delphi database
application for a variety of reasons. Notice that the applica-
tion lacks a DBNavigator component. This control would
clutter our form, so we won’t use one. The application also
differentiates itself in the use of its drop-down combo box.
The combo box serves as a browser rather than as a tool to
allow the user to select new values. It replaces the
DBNavigator’s Prior, Next, First, and Last buttons. The most
obvious difference is that our DBCtrlGrid has no fields. It’s a
bit crazy to use a component that replicates fields without
fields, but it does highlight the powerful things you can
accomplish through component collaboration. We don’t need
fields because the OnPaintPanel event handler will paint the
fields as we need them.

After selecting File | New, the user will be prompted to enter
the name for a new test. After validating the name, the pro-
gram will add a new Test record and randomly select 24 ESP
symbols, adding a Trial record for each. The program will
then generate a default Test Description and pre-position the
cursor for data entry.

After generating the new trials, the TrialsGrid will call the
OnPaintPanel event handler for each record. Because the user
has not made a choice yet, the program will position the
EditPanel over the active record for user selection. All
remaining records are Non-selected, so they remain blank.

When the user makes a selection, it’s saved. After the selec-
tion is saved, three things occur:

The cursor advances to the next record. Changing records
causes the OnPaintPanel event to be called twice.
OnPaintPanel is called once for the previous panel and
once for the panel containing the new record.
The new panel’s Paint call repositions the EditPanel for
user selection. The old panel will paint the panel using
the bitmaps on the EditPanel’s buttons.
Additionally, the old panel will number the trial, high-
lighting the trial number in red or green, depending on
the user’s accuracy. If you find the application colors too
loud, you can always build a monochrome version, or one
using more muted colors.

Before leaving the subject of program design, we should also
discuss our program’s use of Windows resources. The user
sees many ESP symbols in the program; however, a single
copy of each of the six bitmaps will be used. When the user
requests an accuracy display, a pie chart is created and dis-
played on the EditPanel. The EditPanel morphs into a
custom dialog box. This is done to save system resources,
demonstrate an alternative dialog box method, and provide
an example of how the Panel can be morphed.

Of the remaining program elements, some perform various
data translations between our bitmap names and the charac-
ters we’ve chosen to store in our database. Others communi-
cate with the user through various system message boxes.

Figure 9 (Top): A view of the run-time version of the ESP test.
Figure 10 (Bottom): The percentage meter shows the accuracy
of the current ESP test participant.

Columns & Rows

James Callan, an 18-year computing veteran and former consulting director for
Oracle Corporation, is currently president of Gordian Solutions, Inc., an informa-
tion technology consulting provider in Cary, NC. A frequent writer and speaker on
information technology and client/server computing, Jim specializes in product
design. He can be reached at (919) 460-0555, or by e-mail at
102533.2247@compuserve.com.
Adding the Power
To add the power to your mighty morphing power grid, add
the code contained in Listing Two (beginning on page 35).
Until you add an About box to the project, you may want to
forego adding the About1.OnClick event handler. Figure 9
shows the Psychic Diviner at run time. Figure 10 shows the
pie chart that reports the accuracy of the psychic.

If you add hints to each component, the hints will be dis-
played in Panel3. You will need to manually set the OnClick
event handler for each BitBtn on the EditPanel to the
ESPSymbolClick procedure that you manually create. By
declaring the ESPSymbolClick method in the class definition
for the form, Delphi automatically picks it up in the Event
Inspector’s drop-down list for the buttons.

By setting the drop-down list’s DataSource to nil, we allow it
to activate and the current record to change. Because the tests
are WORM (write once, read many), we won’t need to use
the drop-down list for setting a name. You could embellish
the combo box by adding OnKeyDown handlers, but most
users find the way this additional handler blanks the combo
box field a bit distracting.

Using the mod and div operators in conjunction with the
TrialsGrid’s Panel properties moves the EditPanel from
34 November 1996 Delphi Informant
cell to cell. The array-indexing equations, provided in the
TrialsDS OnDataChange event handler, should work for any
size grid. The only caveat is to ensure your controls fit on the
EditPanel when it’s sized to fit into the cell.

Pay particular attention to the TrialsGrid’s OnPaintPanel
event handler. The varEmpty and varNull conditions are
checked using a Variant variable. This checking was not
required for Delphi 1, but Delphi 2 introduced Variants for
OLE and OCX compliance. Unfortunately, some of the Variant
data conversions raise exceptions when DataSets encounter null
records. This test eliminates the nasty conversions.

The DrawChoice method paints the cells for Correct and
Incorrect trials by drawing on the TrialsGrid canvas. The
DBCtrlGrid provides a separate canvas for each cell that can be
used in the OnPaintPanel event handler. We reduce memory by
reusing the same bitmaps that are on our EditPanel’s BitBtn
components. Memory can also be reduced further by dynami-
cally loading the bitmaps from files, but this adds overhead.

The IndexSymbol method converts a random number from 1
to 6 into a single character representation for an ESP symbol.
ExpandSymbol converts from the single character representa-
tion into the full word name that corresponds to the compo-
nent names of the EditPanel’s BitBtns.

The MorphPanel method changes the EditPanel into a deco-
rated modal dialog box. This is a nifty technique that is help-
ful for eliminating additional forms from projects. The Close
SpeedButton’s OnClick event is dynamically set to the
CloseGraph method. It restores the EditPanel and returns it
to its proper position. The CalcAccuracy method uses some
embedded dynamic SQL to determine the percentage of cor-
rect answers as the test proceeds.

Conclusion
We’ve discussed how and why subtypes arise in data models.
We have also demonstrated that using subtypes in our data
models gives us new ways of adding inheritance and special-
ization to our database applications.

By using polymorphism in data-aware grids, we can alter
the appearance of data, and change the way the data is
entered. Through polymorphism, we can shroud diversity
and divine differences. Perhaps the subtle power of Delphi
is now more apparent? ∆

All source code, bitmaps, and database files for the sample
Psychic Diviner program are available on the Delphi Informant
Works CD located in INFORM\96\NOV\DI9611JC.

Columns & Rows
Begin Listing Two — The Psychic Unit
unit Psychic;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, DBCGrids, Buttons, StdCtrls, Menus, Mask,
DBCtrls, ExtCtrls, DBTables, DB, Gauges { Add to list };

type
TForm1 = class(TForm)

Panel1: TPanel;
Panel2: TPanel;
TestNameLKUFld: TDBLookupComboBox;
TestDescriptionFld: TDBEdit;
Label1: TLabel;
Label2: TLabel;
MainMenu1: TMainMenu;
File1: TMenuItem;
View1: TMenuItem;
Help1: TMenuItem;
New1: TMenuItem;
Delete1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
Accuracy1: TMenuItem;
About1: TMenuItem;
Panel3: TPanel;
OKBtn: TButton;
EditPanel: TPanel;
TriangleBtn: TBitBtn;
CrossBtn: TBitBtn;
CircleBtn: TBitBtn;
WavesBtn: TBitBtn;
StarBtn: TBitBtn;
SquareBtn: TBitBtn;
TrialsGrid: TDBCtrlGrid;
TestsDS: TDataSource;
TestsTB: TTable;
TestsLKUDS: TDataSource;
TestsLKUTB: TTable;
TrialsDS: TDataSource;
TrialsTB: TTable;
DeleteTrialsSQL: TQuery;
procedure FormCreate(Sender: TObject);
procedure OKBtnClick(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure TestNameLKUFldDropDown(Sender: TObject);
procedure TestNameLKUFldCloseUp(Sender: TObject);
procedure Panel1Exit(Sender: TObject);
procedure New1Click(Sender: TObject);
procedure Delete1Click(Sender: TObject);
procedure TrialsDSDataChange(Sender: TObject;

Field: TField);
procedure TrialsGridPaintPanel(DBCtrlGrid: TDBCtrlGrid;

Index: Integer);
procedure ESPSymbolClick(Sender: TObject);
procedure Accuracy1Click(Sender: TObject);
// Manually add this handler
procedure About1Click(Sender: TObject);

private
Closer: TSpeedButton; // To close accuracy display
Graph: TGauge; // To display accuracy graph
Editing: Boolean; // Are we editing?
OldLeft: Integer; // Where were we?
OldTop: Integer;
Morphed: Boolean; // Are we morphed?
function IndexSymbol(Index: Integer): string;
function ExpandSymbol(Symbol: string): string;
procedure DrawChoice(Index: Integer;

Target, Choice: string);
// See events for TApplication
procedure DisplayHint(Sender: TObject);
// Morphs EditPanel to accuracy graph
procedure MorphPanel;
// Closes accuracy graph
procedure CloseGraph(Sender: TObject);
// Calculates the accuracy rating
function CalcAccuracy: Integer;

public
35 November 1996 Delphi Informant
function GetBitMap(Symbol: string): TBitMap;
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses AboutDlg;

{ IndexSymbol - Translates an integer into a one character
symbol that represents a Rhine ESP Symbol

T = Triangle W = Waves
C = Cross S = Star
E = Circle (Ellipse) R = Square (Rectangle) }

function TForm1.IndexSymbol(Index: Integer): string;
const

Trans = 'TCEWSR';
begin

Result := Trans[Index];
end;

{ ExpandSymbol - Translates a single character ESP symbol
into the full ESP symbol name }

function TForm1.ExpandSymbol(Symbol: string): string;
begin

case Symbol[1] of
'T': Result := 'Triangle';
'C': Result := 'Cross';
'E': Result := 'Circle';
'W': Result := 'Waves';
'S': Result := 'Star';
'R': Result := 'Square';

end;
end;

{ GetBitMap - Searches the BitButtons on the form by name
looking for a full ESP symbol name in the component name
and returns the bitmap contained on the bit button }

function TForm1.GetBitMap(Symbol: string): TBitMap;
var

I : Integer;
begin

// Use Tag property to speed up the loop
for I:= 0 to ComponentCount-1 do

if (Components[I].Tag <> 0) and
(Pos(Symbol,Components[I].Name) > 0) then

begin
Result := TBitBtn(Components[I]).Glyph;
Exit;

end;
end;

{ DrawChoice - Paints the grid cell based on whether the
choice is Correct or Incorrect }

procedure TForm1.DrawChoice(Index: Integer;
Target, Choice: string);

var
Glyph: TBitMap;

begin
with TrialsGrid.Canvas do begin // Paint on Cell's Canvas

// Characteristic Function for SubType
if Target = Choice then

Font.Color := clGreen
else

Font.Color := clRed;
Font.Size := 14;
TextOut(5, 5, IntToStr(Index));
Font.Size := 8;
Font.Color := clBlack;
TextOut(40, 14, 'Target:');
Draw(80, 6, GetBitMap(Target));
TextOut(155, 14, 'Choice:');
Draw(195, 6, GetBitMap(Choice));

end;
end;

Columns & Rows
{ ESPSymbolClick - All bit buttons come here
to be serviced }

procedure TForm1.ESPSymbolClick(Sender: TObject);
var

Choice: string;

begin
if not Morphed then

begin
Choice := IndexSymbol(TComponent(Sender).Tag);
TrialsTB.Edit;
// Set choice
TrialsTB['Choice'] := Choice;
// Save the change
TrialsTB.Post;
// Hide the panel
EditPanel.Visible := False;
// Auto-advance to next record
TrialsTB.Next;

// Move back to top when done
if TrialsTB.EOF then

TrialsTB.First;
end

end;

{ CalcAccuracy - Calculates the accuracy rating from all
selected trials by counting the number or correct and the
number of incorrect and determining the percentage
correct out of the total }

function TForm1.CalcAccuracy: Integer;
var

// Dynamic SQL query used to count answers
Counter: TQuery;
NumRight: Integer;
NumWrong: Integer;

begin
try

Counter := TQuery.Create(EditPanel);
with Counter do begin

DatabaseName := 'SubTypes'; // Count right answers
SQL.Add('SELECT COUNT(TRIALNO) FROM TRIALS');
SQL.Add('WHERE (TESTID = ' +

TestsTB.FieldByName('TestID').AsString +
') AND (TARGET = CHOICE)');

Open;
NumRight := Fields[0].AsInteger;
Close;
SQL.Clear; // Count wrong answers
SQL.Add('SELECT COUNT(TRIALNO) FROM TRIALS');
SQL.Add('WHERE (TESTID = ' +

TestsTB.FieldByName('TestID').AsString +
') AND (TARGET <> CHOICE) AND (CHOICE <> ' +
'''' + 'N' + '''' + ')');

Open;
NumWrong := Fields[0].AsInteger;
Close;

end;
finally

Counter.Free;
end;
Result := Trunc(NumRight/(NumRight+NumWrong)*100);

end;

{ MorphPanel - Changes EditPanel into an accuracy
graph modal window }

procedure TForm1.MorphPanel;
var

I: Integer;
begin

Morphed := True;
Editing := EditPanel.Visible;
TrialsGrid.Enabled := False; // Disable grid
with EditPanel do begin

Visible := False;
OldLeft := Left;
OldTop := Top; // Morph the panel
Left := 150;
Top := 25;
Height := Height+200;

end;
36 November 1996 Delphi Informant
for I:= 0 to ComponentCount-1 do
if Components[I].Tag <> 0 then

with TBitBtn(Components[I]) do Top := Top+20;
Closer := TSpeedButton.Create(EditPanel);

with Closer do begin
Parent := EditPanel;
Font.Style := [fsBold];
Height := 13;
Width := 13; // Add some new components
Caption := 'X';
Left := EditPanel.Width-16;
Top := 2;
OnClick := CloseGraph; // Map the click event
Visible := True;

end;
Graph := TGauge.Create(EditPanel);

with Graph do begin
Parent := EditPanel;
BorderStyle := bsNone;
BackColor := clRed;
ForeColor := clGreen;
Height := 175;
Top := 65;
Left := 35;
Width := 175;
Kind := gkPie;
Font.Size := 18; // Provide a hint
Visible := True;
Hint := 'The percentage indicates the ' +

'ESP rating for this exam';
end;
try

Graph.Progress := CalcAccuracy;
EditPanel.Visible := True;

except // Empty table creates exception
CloseGraph(Self);
messageDlg('Must have test to calculate accuracy.',

mtInformation, [mbOK], 0);

end;
end;

{ CloseGraph - Changes the accuracy graph back into
the edit panel }

procedure TForm1.CloseGraph(Sender: TObject);
var

I: Integer;
begin

EditPanel.Visible := False;
Graph.Free;
Closer.Free;
for I:= 0 to ComponentCount-1 do

if Components[I].Tag <> 0 then
with TBitBtn(Components[I]) do Top := Top-20;

with EditPanel do begin

Left := OldLeft;
Top := OldTop; // Restore panel
Height := Height-200;
if Editing then

Visible := True;
end;
TrialsGrid.Enabled := True;
Morphed := False;

end;

procedure TForm1.DisplayHint(Sender: TObject);
begin

// Displays hints at form bottom
Panel3.Caption := Application.Hint;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

// See on-line help on TApplication
Application.OnHint := DisplayHint;

// Hides space below grid
Height := Height-45;

Columns & Rows
// Open the tables
TestsTB.Open;
TestsLKUTB.Open;
TrialsTB.Open;
Morphed := False;

end;

procedure TForm1.OKBtnClick(Sender: TObject);
begin

Application.Terminate;
end;

procedure TForm1.Exit1Click(Sender: TObject);

begin
Application.Terminate;

end;

procedure TForm1.TestNameLKUFldDropDown(Sender: TObject);
begin

// Make the field editable
TestNameLKUFld.DataSource := nil;

end;

procedure TForm1.TestNameLKUFldCloseUp(Sender: TObject);
begin

// Move to selected record
TestsTB.Locate('Name', TestNameLKUFld.Text, []);
TestNameLKUFld.DataSource := TestsDS

end;

procedure TForm1.Panel1Exit(Sender: TObject);
begin

// Implicit posting
if TestsTB.State in [dsEdit] then

TestsTB.Post;
end;

{ File:New - Creates a new test and randomly generates
the 24 trials that comprise the test }

procedure TForm1.New1Click(Sender: TObject);
var

NewTest: string;
TestID: Integer;
I: Integer;

begin
NewTest := InputBox('Enter New Test Name',

'Test Name:', '');
if NewTest <> '' then

begin
if TestsTB.Locate('Name', NewTest, []) then

begin
messageDlg('A test named ' + NewTest +

' already has been saved. ' +
'Try another test name.', mtError,
[mbOK], 0);

Exit
end;

TestsTB.Insert;
TestsTB['Name'] := NewTest;
TestsTB['Description'] :=

'Describe the new test here.';
TestsTB.Post;
TestID := TestsTB['TestID'];
Randomize; // Set up the random generator
TrialsDS.Enabled := False; // Avoid screen flicker
for I:= 1 to 24 do begin

TrialsTB.Insert;
TrialsTB['Target'] :=

IndexSymbol(Trunc(Random(6)+1));
TrialsTB['TrialNo'] := I;
// Explicitly set Non-selected value

TrialsTB['Choice'] := 'N';
TrialsTB.Post

end;
37 November 1996 Delphi Informant
TrialsDS.Enabled := True;
// Position on description field
TrialsTB.First;
TestDescriptionFld.SetFocus;
// Resynch test name field
TestsLKUTB.GotoCurrent(TestsTB);
// Make sure lookup refreshes
TestNameLKUFld.DataSource := nil;
TestNameLKUFld.DataSource := TestsDS;

end
else

messageDlg('New Test Generation Cancelled',
mtInformation, [mbOK], 0)

end;

procedure TForm1.Delete1Click(Sender: TObject);
begin

if messageDlg(
'Are you sure you want to delete this test?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then

begin
if EditPanel.Visible then

EditPanel.Visible := False;
DeleteTrialsSQL.ParamByName('TESTID').AsInteger :=

TestsTB['TestID'];
DeleteTrialsSQL.ExecSQL;
TestsTB.Delete

end
end;

{ This handler is responsible for causing the EditPanel to
hover over the active cell in the TrialsGrid. You may
want to experiment with different size grids. }

procedure TForm1.TrialsDSDataChange(Sender: TObject;
Field: TField);

begin
if TrialsTB['Choice'] = 'N' then

with TrialsGrid do begin
EditPanel.Left :=

(PanelIndex mod ColCount)*PanelWidth+Left;
EditPanel.Top :=

(PanelIndex div ColCount)*PanelHeight+Top;
EditPanel.Width := PanelWidth;
EditPanel.Height := PanelHeight;
EditPanel.Visible := True;
TriangleBtn.SetFocus;

end
end;

procedure TForm1.TrialsGridPaintPanel(
DBCtrlGrid: TDBCtrlGrid; Index: Integer);

var
Choice: string;
// Workaround for OLE variant NULL field assignment
V: Variant;

begin
V := TrialsTB.FieldByName('Choice').AsString;
if (VarType(V) = varEmpty) or

(VarType(V) = varNull) then
Choice := ''

else
Choice := V;

if (Choice <> '') and
(Choice <> 'N') then

DrawChoice(TrialsTB['TrialNo'],
ExpandSymbol(TrialsTB['Target']),
ExpandSymbol(Choice));

end;

procedure TForm1.Accuracy1Click(Sender: TObject);
begin

MorphPanel;
end;

Columns & Rows
procedure TForm1.About1Click(Sender: TObject);
begin

AboutBox := TAboutBox.Create(Application);
AboutBox.ShowModal;
AboutBox.Free;

end;

end.

End Listing Two
38 November 1996 Delphi Informant

39 November 1996 Delphi Informant

At Your Fingertips
Delphi / Object Pascal

By David Rippy

N

othing is particularly hard if you divide it into small jobs.

— Henry Ford
How do I create a table at run time?
One of the most important aspects of pro-
gramming in Object Pascal is gaining a firm
understanding of creating and freeing com-
ponents at run time. A classic example is to
programmatically create a Table object that is
freed once it isn’t needed. This is more effi-
cient than adding a Table component to the
form. In addition, the form is less cluttered
and easier to work with at design time.

The purpose of this example is to create a
temporary table (TblTemp) to populate
Form1’s ListBox with the contents of the
Name field from table FRUIT.DB (see
Figure 1). Because the table is only needed
for a short time — to add items to the
ListBox — there is no need to use a Table
component. Instead, the example creates the
TblTemp component at run time, then frees
it once ListBox1 has been populated.

The first step is to add the DB and
DBTables units to the uses clause. These

units must be included to use the Table com-

Figure 1: The list box is populated by a tempo-
rary table.
ponent created by the code. (When you add
a Table component at design time, these
units are added automatically.)

The code in Figure 2 is attached to the
OnClick event handler of the Populate ListBox

button. This code creates the temporary
TblTemp Table and assigns the necessary
properties, iterates through the FRUIT.DB
table to populate ListBox1, and finally closes
and frees the table. The first key statement:

TblTemp := TTable.Create(Self);

creates an instance of TblTemp. Note that
because we don’t want to assign an owner to
TblTemp, Self is passed to the Create method.

When you create a component (or any
object) explicitly in this fashion, it’s vitally
important to free the resources it’s using by
calling the Free method. In this code exam-
ple, the with construct makes the statement
a bit hard to discern. Outside a with block,
the statement would appear like this:

TblTemp.Free;

Once you become familiar with this technique,
it can be applied to essentially any Delphi
component, such as TQuery, TIniFile, and
TMediaPlayer. (Please note that in an actual
application you would never refer to a table in
the hard-wire fashion shown here. You would
instead assign and use an alias.) — D.R.

How can I quickly view the SQL assigned
to a TQuery object at run time?
Debugging forms that contain Query compo-
nents can be tricky at times, particularly if sev-
eral SQL statements can potentially be assigned

Figure 2: This code is attached to the OnClick event handler of
Button1.

procedure TForm1.Button1Click(Sender: TObject);
var

TblTemp: TTable; { Declare TblTemp }
begin

{ Create instance of TblTemp }
TblTemp := TTable.Create(Self);
TblTemp.DatabaseName := '';
with TblTemp do begin

try
TableName := 'FRUIT.DB';
Open;
First;
while not EOF do begin

ListBox1.Items.Add(FieldByName('Name').AsString);
Next;

end;
finally

Close;
Free;

end;
end;

end;

Figure 6:
OnTimer
and
OnClick
events for
the Timer
and
Button
compo-

Figure 5:
The
“Working…”
Label blinks
in this
example.

At Your Fingertips
to a single Query object. A technique often used by client/server
developers to help the debugging process is to save the Query’s
SQL code to a text file. The SQL statement can then be easily
viewed with a text editor to ensure it’s what’s expected and is
correct.

This technique is easy to implement, requiring only a few
lines of code. Figure 3 shows the OnClick method of the Save

SQL button (see Figure 4). The key to this example is the
SaveToFile method for the SQL property of the Query object.
When the button is pressed, SaveToFile is invoked, and the
SQL property value is written to the file SQL.TXT in the
current directory. The contents of SQL.TXT can then be
viewed in any text editor (see Figure 4).

In a production environment, you would place this code just
before the query is executed, instead of attaching it to a but-
40 November 1996 Delphi Informant

Figure 4: You can use any text editor to view the SQL statement
once it is saved.

Figure 3:
SaveToFile
allows you
to save
the SQL
property
value to a
text file.
ton. Again, you would not hard-wire any directory or table
name. — Mike Leftwich, Ensemble Corporation

How can I add blinking text to a form?
Adding a blinking text Label to a form is a great way to attract
attention or display an application’s status during a lengthy
process. For example, the blinking message “Working…”
shown in Figure 5 will deter an impatient user from rebooting
the machine while the National Budget is being balanced.

Although Delphi’s Label component doesn’t have a “blink”
property, the same effect is obtained by toggling the Visible
property of the component. The form in Figure 5 contains a
Timer, Button, and Label. The Timer’s OnTimer event han-
dler contains the code that creates the blinking effect for
Label1. With this code in place, the timer’s Enabled property
is set to True in the OnClick event handler of Button1, caus-
ing the Label to start blinking (see Figure 6).
nents.
You can adjust the blink rate by setting the Interval property
of Timer1. The lower the value, the faster the Label will
blink. As you might have guessed, this technique will work
on any object with a Visible property — not just Label com-
ponents. — D.R. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\NOV\DI9611DR.
David Rippy is a Senior Consultant with Ensemble Corporation, special-
izing in the design and deployment of client/server database applica-
tions. He has contributed to several books published by QUE. David
can be reached on CompuServe at 74444,415.

41 November 1996 Delphi Informant

Case Study

By David Rippy

Inquire Within
Engaging Kiosk System Reels in Apartment Shoppers

The application h
screen monitor.
W ith over 97,000 apartments in nearly 200 cities, Lincoln Property
Company (LPC) is one of the largest property management compa-

nies in the United States. To maintain this status, LPC is constantly looking
for innovative ways to attract and retain new renters; companies like LPC
lose business when a potential renter leaves the rental office of an apart-
ment complex before a leasing agent can offer assistance. Another area of
concern is the high cost of printed materials, specifically the floor plans and
related pamphlets taken by prospective renters who often do not return.
a

With these pitfalls in mind, LPC partnered
with Ensemble Corporation’s Multimedia
Division to implement a high-profile, state-
of-the-art kiosk system for the reception
area of its Knoxbridge rental office. A kiosk
system combats the “walkout” problem by
entertaining and informing the customer
when the leasing agent is busy. Also, a kiosk
system can dramatically reduce off-site
s a stately appearance on a 21-inch touch-
printing costs by supplying printouts of
floor plans and other literature as needed.
Equally important is that the system allows
modifications to the literature as often as
necessary, for a fraction of what a print
shop would charge.

These were the goals of the Knoxbridge
project:

reduce printing costs by at least 75 per-
cent,
reduce the number of walkouts by 50
percent,
provide a system that reflects the corpo-
rate image and quality standards of LPC,
provide a modular system that can be
expanded as needed,
provide professional-quality 2D and 3D
graphics throughout the system, and
provide a high-quality musical sound-
track throughout the system.

Implementation
Several development environments were
available for creating interactive applica-
tions, but only Delphi offered both the
multimedia aspects and the solid database

Potential renters can preview any of Knoxbridge’s seven floor
plans.

The rotating, 3D floor plans fuel prospective renters’ imagina-
tions.

Case Study

The interactive map helps sell the neighborhood.

A slide show takes visitors on a virtual tour of the Knoxbridge
complex.

Still shots of each room round out the visual presentation.
functionality needed for a project of this nature. In fact,
Delphi provided all the necessary development features
“out of the box.”

The multiple 2D and 3D animations found throughout
the application were created with Autodesk’s 3D Studio.
Featuring highly detailed renderings of each room, the ani-
mations give the user a completely unique and memorable
way to shop for an apartment. Unlike other marketing
materials that force the shopper to imagine a floor plan’s
appearance, the Knoxbridge kiosk application provides an
accurate view of every available option. These animations,
combined with the speed and power of Delphi, give the
application a highly professional look and feel.
The four-person project team included a senior consultant
from Ensemble, a seasoned Delphi programmer, and a pair
of artists specializing in 3D graphics. Working jointly with
LPC’s Marketing Director and Vice President of Technology,
Ensemble created a flexible system that can accommodate
any of LPC’s apartment complexes across the United States.

A critical factor to the success of the system was
Ensemble’s ability to “bring to life” the vision of LPC’s
Marketing Director. Using Ensemble’s iterative prototyp-
42 November 1996 Delphi Informant
ing methodology, the team could continually test and
refine the system until it achieved a perfect combination
of excitement and ease of use.

Results
The kiosk application was an instant success, with many
potential tenants using the system each day. Since imple-
mentation, the kiosk system has substantially reduced

Case Study

Ensemble Corporation of Dallas, TX recently
implemented a state-of-the-art, multimedia
kiosk system for the Knoxbridge apartment
complex, managed by Lincoln Property
Company. The interactive application was
designed to entertain and inform potential
apartment renters when a leasing agent is not
available. Users can review and print out
apartment floor plans, examine amenities, and
learn about local merchants and institutions.

Target Audience: Property management
companies and real-estate agents.

Users: Potential apartment renters and
apartment leasing agents.

Third-Party Tools: Autodesk 3D Studio.

Ensemble Corporation
12655 N. Central Expressway, Suite 700
Dallas, TX 75243
Phone: (214) 960-2700
Fax: (214) 960-2704

Autodesk
642 Harrison St., San Francisco, CA 94107
Phone: (415) 547-2000
Fax: (415) 547-2222
Web Site: http://www.autodesk.com

APPLICATION PROFILE
walkouts, increased apart-
ment rentals, and saved thou-
sands of dollars annually in
printing and administrative
costs. With the business con-
cept now proven, the system
will be rolled out to other
LPC properties, each with its
own set of custom floor
plans, amenities, and area
attractions.

The kiosk system is truly a tes-
tament to Delphi’s ideal bal-
ance of compiler technology
and rock-solid database fea-
tures — a perfect match for
interactive applications such as
this. More importantly to the
client, Delphi’s Rapid
Application Design approach
kept development time (and
cost) to a minimum. ∆
43 November 1996 Delphi Informant

David Rippy is a Senior Consultant with Ensemble Corporation, specializing in
the design and deployment of client/server database applications. He has con-
tributed to several books published by QUE. David can be reached on
CompuServe at 74444,415.

E-mail: Internet: ktxwebmaster@ktx.com

44 November 1996 Delphi Informant

Delphi at Work
Delphi 1/ Delphi 2 / Object Pascal

By Shamiq Cader

A Matter of Time
Exploring the TDateTime Object
Have you ever tried to add five minutes and 30 seconds to the current
time? At first this may seem like a trivial computation. If you look clos-

er, however, the complexity of this logical operation becomes clear. For
example, what do you do if the time is 11:55 PM on the 31st of
December? Suddenly, this doesn’t look so trivial.
Wouldn’t it be nice if a programming lan-
guage exists that allows you to easily perform
date and time manipulation? Actually there
is. The language, of course, is Object Pascal,
and it’s the TDateTime type that makes date
and time manipulation a breeze.

The TDateTime Type
The TDateTime type stores date and/or time
values in one object. TDateTime is of type
Float, and stores date and time information
in an X.Y format, where X is the date infor-
mation and Y is the time information. The
date is stored as the number of days since
year 1 (i.e. 1/1/1); the time is stored as a dec-
imal fraction of the day.

To clarify, consider the following example.
Let’s say Delphi needs to store 9:00 AM in
the TDateTime format. At this time, nine
hours has elapsed (that is, 9/24 of the day has
expired). Therefore, the fraction of the day
that has elapsed (since midnight) is 0.375.

This scenario is more complex when minutes
are introduced. For instance, what if 9:15 AM
must be stored? Fifteen minutes is 15/60 of an
hour, or 0.25 hours. This is 0.25/24 of a day,
which equates to 0.0104167. Therefore,
TDateTime stores 9:15 AM as 0.37500 +
0.0104167, or simply 0.3854167.
TTimeDate’s Advantages
Before proceeding, let’s discuss the advantages
of storing date and time in this format. First,
as already described, one variable stores date
and time, making date/time manipulation
much easier.

Second, handling date/time values as a
Float makes date and/or time math easy as
well. For example, assume we must deter-
mine the correct time after 10 minutes has
elapsed. If the beginning time is 11:55 PM,
10 minutes will take us into the next day.
With the TDateTime format, everything
takes care of itself.

For example, when 10 minutes is added to the
fraction part, and if the result exceeds 12:00
AM, TDateTime will automatically “carry a
one” into the integer part, i.e. the date will be
increased by one. An example shows this idea
more clearly. Let’s say a TDateTime object is
storing 728902.996527778 (8/31/96 11:55
PM). If we add 10 minutes, 0.006944444, to
this value, the result is 728903.003472222 (or
9/1/96 12:05 AM).

Examining this, you may wonder how much
logic is needed to convert this TDateTime
type into a readable date and time format.
After all, what good is 693500.44543 if it

Delphi at Work
cannot be understood as a valid date and time? Fortunately,
Delphi provides several functions to convert this cryptic
number.

Time, Date, and Now
Delphi provides three simple
ways to get the system date
and/or time via the TDateTime
object. To illustrate, Figure 1
shows the results of the follow-
ing OnFormShow routine.
(Note that this example
assumes six appropriately-
named Edit components.)

procedure TForm1.FormShow(Sender: TObject);
begin

EditTime.Text := TimeToStr(Time);
EditTimeValue.Text := FloatToStr(Time);

EditDate.Text := DateToStr(Date);
EditDateValue.Text := FloatToStr(Date);

EditNow.Text := DateTimeToStr(Now);
EditNowValue.Text := FloatToStr(Now);

end;

The Object Pascal Time function returns the system time as a
TDateTime type which allows us to format it as we see fit.
Figure 1 shows the results in two formats. First, the
TimeToStr function is used to display the time in the stan-
dard fashion for the United States (more about this later).
Below it, the FloatToStr function shows us the value behind
the scenes, 0.471743171296296, where the integer (date)
portion is set to zero.

The Date function returns the system date. The Float value is
728927 and there is no fractional (time) value.

The Now function returns the entire date/time value:
728927.471743171.

Displaying the System Date and Time
System date and time are often displayed in an edit box,
label, or memo field. In all cases, the information must be
converted to a string format. Delphi provides several func-
tions to display the system date and time.

The program in Figure 2 uses
the DateToStr function to
convert the date part of the
TDateTime format into a
readable string that can be
displayed in an edit box.
Similarly, the TimeToStr
function converts the time
part of the TDateTime for-
mat into a readable string.

The string’s format (e.g. 23:00:00, or 11:00:00 PM) is deter-
mined by Windows settings (which are outside the scope of
this article).

Figure 1: The TDateTime
object stores date/time infor-
mation as a Float value.

Figure 2: Extracting and
displaying the system date
and time.
45 November 1996 Delphi Informant
More importantly, DateToStr and TimeToStr convert the
TDateTime format into readable strings. The .PAS unit for
the System Date and Time program is shown in Listing
Three on page 49.

More Date and Time functions
Figure 3, the Add 15 Minutes pro-
gram, is an implementation of the
scenario we discussed earlier. This
program adds 15 minutes (instead
of 10) to a date and time entered
by the user, and displays the result-
ing date and time in separate edit
boxes. Here we are introduced to
the StrToDate and StrToTime func-
tions that try to convert strings to
the TDateTime format. If the con-
version fails, an EConvertError exception is raised. This can
be used to validate the date or time the user has entered.

Note that this program uses the MyDate and MyTime vari-
ables to hold the date and time values the user has entered.
Let’s say the same variable is used:

{ X.0 where X is an integer }
MyDate := StrToDate(Edit2.Text);
{ 0.Y where Y is a fraction }
MyDate := StrToTime(Edit1.Text);

This code causes a problem, because the second call to the
StrToTime function will overwrite the date portion of
MyDate. However, using two variables to construct a third
works just fine:

MyDate := StrToDate(Edit2.Text); { MyDate = X.0 }
MyTime := StrToTime(Edit1.Text); { MyTime = 0.Y }
DateTime := MyDate + MyTime; { DateTime = X.Y }

Because 15 minutes equates to 0.0104166 (or 15/60/24) days,
adding 0.0104166 to DateTime adds 15 minutes to the date
and time entered by the user. The DateToStr and TimeToStr
functions will display the result in the appropriate edit boxes.

If the user enters 11:55:00 PM into Enter Time and 2/28/96
into Enter Date, the result displays 12:10:00 AM and 2/29/96
in New Time and New Date, respectively. Similarly, if the user
enters 11:55:00 PM as the time and 2/28/95 as the date, the
result is displayed as 12:10:00 AM and 3/1/95. Thus, we can
see Delphi handles every detail, including leap years. (Error
checking was not implemented in the program referenced here.
We’ll discuss exception handling later.) The code for the Add
15 Minutes program is shown in Listing Four on page 49.

Formatting the Date and Time String
Although several methods exist for formatting the date and
time string, a convenient way to do this is to use the
FormatDateTime function. FormatDateTime can be used in
place of DateToStr or TimeToStr to format the display string
to any desired form (see Figure 4). For a complete code list-
ing of the associated .PAS file, see Listing Five on page 50.

Figure 3: A sample
program to add 15
minutes to the current
time.

Figure 4: A program that displays the date and time in different
formats.

Delphi at Work

Figure 5: A program demonstrating the
EncodeDate and DayOfWeek functions
and the exception that’s raised when con-
verting to and from the TDateTime format.
The FormatDateTime function takes two parameters: the for-
mat string indicating the desired format and TDateTime.
Several formats can be obtained by using FormatDateTime.
Delphi’s online Help features a complete list of format speci-
fiers; just search using “FormatDateTime”.

Let’s look at an example of FormatDateTime. Assuming
MyDate has 01/08/96, using:

FormatDateTime('yyyy mmmm dd',MyDate)

yields 1996 January 08 in the display.

The yyyy indicates a four-digit, complete-year format (1996).

If yy was used:

FormatDateTime('yy mmmm dd',MyDate)

the short-year format displays 96 January 08.

The sidebar “Date and Time Combos” on page 47 lists all the
possible combinations for the date January 8, 1996 and the
time 2:05:08 (assigned to the MyDate variable).

More Date and Time Functions
The program in Figure 5 introduces the use of the
EncodeDate and DayOfWeek functions. The EncodeDate
function takes three parameters: Year, Month, and Day.
EncodeDate then tries to put them together and return a
valid date as a TDateTime format:

try
DT := EncodeDate(Year, Month, Day);

except
on EConvertError do

{ something }
end;

If the conversion fails, an EConvertError is raised. This
could be used to inform the user that an invalid date was
entered. Any error message can be generated in place of
the { something } comment. In this program, a flag is
set and a message dialog box is displayed. A flag was used
simply because an else clause was preferred.

Note that all three parameters for EncodeDate are of type
Word. This is important when dealing with the year parame-
ter. A valid year falls between 1 and 9999. Therefore, 1996
46 November 1996 Delphi Informant
and 96 indicate
very different
things, i.e. 96
equates to 96 AD,
not 1996 AD.

Several other func-
tions belong to the
same family as
EncodeDate. These
are EncodeTime,
DecodeDate, and
DecodeTime.
The EncodeTime function works similarly to EncodeDate:

DT := EncodeTime(Hour, Min, Sec, Msec);

where DT is of type TDateTime, and Hour, Min, Sec, and Msec
are all of type Word.

The functionality of DecodeDate is just the opposite of
EncodeDate. DecodeDate is a procedure that takes four
parameters:

DecodeDate(DT, Year, Month, Day)

DT is of type TDateTime, and Year, Month, and Day are of
type Word. DecodeDate is defined as:

DecodeDate(DT: TDateTime, var Year, Month, Day: Word);

As you’ve probably guessed, this function will disseminate a
TDateTime structure and extract the year, month, and day as
separate variables.

The DecodeTime function is similar to DecodeDate. DecodeTime
extracts hours, minutes, seconds, and milliseconds from a
TDateTime object and returns the values as four variables.

The program in Figure 5 also introduces the DayOfWeek
function (see Listing Six, beginning on page 50). It takes a
TDateTime and returns an integer that corresponds to the
day of the week. It returns 1 through 7 in place of Sunday
through Saturday.

This program obtains three values from the user (year, month,
and day) and tries to convert that information into a
TDateTime format. If it succeeds, the program displays the
complete date using the DateToStr function, and the day of the
week using the DayOfWeek function. The value returned by
DayOfWeek is passed into the case statement and the appropri-
ate string is displayed. If the conversion fails, an EConvertError
exception is raised, and a message dialog box is generated.

Converting to and from the DOS Date and Time Format
DOS often stores its date and time format as a Longint.
Two bytes are used as the date and two bytes are used as the
time. When interfacing with DOS, converting from one
format to the other is often necessary. Delphi provides two

47 November 1996 Delphi Informant

Date and Time Combos

Delphi provides a number of variables for date and time formatting. Delphi automati-
cally manages the variables ShortDateFormat and LongDateFormat to contain a date or
time formatting string that is appropriate for your locale. For example, if Windows is
configured for use in a European country, the date and time formats may be different
than those for the United States. It’s recommended that you use these pre-defined vari-
ables whenever possible because they will allow your program to automatically adapt for
use in regions with different date and time formats.

In all cases, the format
strings used should be
enclosed within
quotes.

Date. The date consists
of the date, month,
year, and day of the
week. Figure A
assumes the date is
January 8, 1996.

If the date must be
displayed as
Monday/08/01/96,
the format
statement is:

FormatDateTime('dddd/dd/mm/yy',MyDate)

The separator used (/) could be changed to (-) by changing the format string to:

'dddd-dd-mm-yy'

instead of:

'dddd/dd/mm/yy'

Time. Time consists
of hours, minutes,
and seconds. The
time could also be
formatted in several
different ways.
Figure B assumes
the time in MyTime
is 2:05:08.

If the time must be displayed as (10-50-00-p), the format statement is:

FormatDateTime('hh-nn-ss-a/p',MyTime)

Notice that the separator can be changed by inserting any value between the format
codes.

Delphi’s online Help has a list of the available format strings. To reference them,
search on “formatting data”.

— Shamiq Cader

Specifier Example Description

d 8 Displays day without leading zero
dd 08 Displays day with leading zero
ddd Mon Displays day as abbreviation
dddd Monday Displays full day
ddddd 1/8/96 Displays date using short-date

format
dddddd Monday January Displays date using long-date

8, 1996 format
m 1 Displays month without leading

zero
mm 01 Displays month with leading

zero
mmm Jan Displays month as abbreviation
mmmm January Displays month in full
yy 96 Displays year in two digits
yyyy 1996 Displays year in full

Specifier Example Description

h 2 Displays hour without leading zero
hh 02 Displays hour with leading zero
n 5 Displays minutes without leading

zero
nn 05 Displays minutes with leading zero
s 8 Displays seconds without leading

zero
ss 08 Displays seconds with leading zero
t 2:05 AM Displays time using short time

format
tt 02:05:08 AM Displays time using long time

format
am/pm 02:05:08am Uses 12-hour clock and inserts

am/pm immediately after time
string

a/p 02:05:08a Same as above but inserts a or p

Figure A: Formatting dates.

Figure B: Formatting time.

Delphi at Work
functions to achieve this. These are
FileDateToDateTime:

FileDateToDateTime(DosVar : Longint) :

TDateTime

and DateTimeToFileDate:

DateTimeToFileDate(DT : TDateTime) :

Longint

FileDateToDateTime takes a Longint
and returns the corresponding
TDateTime conversion. This value
can then be used within Delphi as the
familiar TDateTime type.

DateTimeToFileDate takes a
TDateTime type and returns a
Longint. This Longint can then be
used from within any DOS applica-
tion as a regular DOS date/time type.

(Note that this article does not intend
to show you how DOS stores date and
time. This information is available in
most DOS-related materials. The
point is that Delphi provides two
functions to convert the DOS date
and time into a format Delphi recog-
nizes, and vice versa.)

Object Pascal Routines
Before concluding, let’s discuss several
other date/time routines provided by
Object Pascal. These routines were
left in Delphi to provide backward
compatibility with previous versions
of Pascal, and are still valuable.

The GetDate function corresponds to
using the Now and DecodeDate func-
tions. DayofWeek takes any value
between 0 to 6 where 0 corresponds
to Sunday:

procedure GetDate(var Year, Month, Day,
DayofWeek : Word);

The GetTime function corresponds to
using the Now function followed by
the DecodeTime function. Here
Sec100 corresponds to 100th of a sec-
ond:

procedure GetTime(var Hour, Minute,
Second, Sec100 : Word);

On December 31, 1999, at 11:59:59 PM ...

... you won’t be kissing your sweetheart when the Big Apple
drops in New York’s Times Square. Instead, your palms will
sweat, your brows will twitch, and you won’t rest the weekend
of January 1, 2000.

Why?

Because on Monday, January 3, 2000, several of your best software
clients will complain about the incorrect dates in the programs
you’ve built. (Consider this: if you have created a financial, num-
bers-crunching application based on a fiscal-year calendar, your
clients should start becoming frustrated, oh, sometime around
September 30, 1999.)

Most developers never thought their programs would live to see the
end of the 20th century. As a result, many applications will behave
badly when the date switches from 12/31/99 to 1/1/00. For exam-
ple, some programmers may have only reserved two digits in a
database field to hold the year number (e.g. 92). The programmer
would then hard-code “19” in front of the date to display or print
it accurately. However, when the year turns over to “00”, we are
suddenly thrown back to 1900 from the software’s point of view.

One estimate states this problem will easily cost billions of dol-
lars in software maintenance and lost revenue. Other reports add
that it’s quite likely consumers will receive telephone or cable
bills for 100 years plus 30 days of service. Think of the irate cus-
tomers you’d have to face. And all because you wanted to save
two bytes per date field! Fortunately, this isn’t an issue for Delphi
applications, because the date/time fields and routines encapsu-
late a complete date in them.

For more information about issues facing developers as the
20th century ends, check out the Year2000 Web site at
http://www/year2000.com/cgi-bin/clock.cgi (see Figure C). It
contains links to articles about software problems and the
year 2000, discussion groups, press releases, and 21st century
FAQs. You can also find information on 1999/2000 solutions
conferences and seminars for developers.

— Robert Vivrette & Myrna Dingle-Gold

Function(s) Description

Now, Date, Time Retrieves system date/time or both

DateToStr, TimeToStr Converts TDateTime to string

StrToDate, StrToTime Converts string to TDateTime
DecodeDate, Separates date/time into individual
DecodeTime components
EncodeDate, Assembles the TDateTime from the
EncodeTime individual components

DayOfWeek Returns day of week for given date

FormatDateTime Formats date/time for output
FileDateToDateTime, Converts to and from DOS date/time
DateTimeToFileDate format
GetTime, GetDate, Object Pascal routines
SetTime, SetDate

Figure 6: A summary of functions used in the demonstration
programs.

Delphi at Work
The SetDate and SetTime functions can be used to set the
operating system date and time:

procedure SetDate(Year, Month, Day : Word);

procedure SetTime(Hour, Minute, Second, Sec100 : Word);

The valid parameter ranges are:
Year1980-2099

Month1-12

Day1-31

Hour0-23

Minute0-59

Sec0-59

Sec1000-99

Unlike the Delphi routines, if a parameter is invalid, no
exception is raised — the request is simply ignored. For a
summary of all the functions we’ve covered, see Figure 6.

Conclusion
Confronting date and time issues in your Windows applica-
tions is not easy. (And this programmer’s task will be mon-
strous as the year 2000 approaches. For more information on
managing end-of-the-century software issues, see the sidebar
“On December 31, 1999, at 11:59:59 PM ...” on page 48).

Fortunately, Delphi provides the tools necessary for your
applications to handle date/time topics with ease. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\NOV\DI9611SC.
48 November 1996 Delphi Informant

Figure C: The Year2000 Web site.

Shamiq Cader is a Software Engineer at Texas Engineering & Mechanical Co. in
Galveston, TX. He has an MS in Computer Science from the University of Houston
at Clear Lake and worked on designing and building FaxLink Enterprise, a
Windows-based fax server. Released in May 1996, FaxLink Enterprise is written
totally in Delphi. You can contact Shamiq at shameek@neosoft.com or
shameek@juno.com.

Delphi at Work
Begin Listing Three — System Date and Time
{ Demo program to extract system date and time }
unit Fig1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Edit1: TEdit;
Edit2: TEdit;
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var

DateTime : TDateTime;
begin

{ Extracts the date and time }
DateTime := Now;
{ Converts the date to a string }
Edit1.Text := DateToStr(DateTime);
{ Converts the time to a string }
Edit2.Text := TimeToStr(DateTime);

end;

end.

End Listing Three
Begin Listing Four — Add 15 Minutes Program
{ This program adds 15 minutes to the time entered by the

user. It will also take care of the date if the time goes
beyond midnight. Leap years are also handled. }

unit Fig2;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Edit1: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Button1: TButton;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;
49 November 1996 Delphi Informant
var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var

DateTime : TDateTime;
MyDate, MyTime : TDateTime;

begin
{ Get the date entered by the user }
MyDate := StrToDate(Edit2.Text);
{ Get the time entered by the user }
MyTime := StrToTime(Edit1.Text);
{ Add them to get one TDateTime type }
DateTime := MyDate + MyTime;
{ Adds 15 minutes to the time }
DateTime := DateTime + (15/60/24);
{ Converts back to a string for displaying }
Edit3.Text := TimeToStr(DateTime);
Edit4.Text := DateToStr(DateTime);

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{ Clears all edit boxes }
Edit1.Text := '';
Edit2.Text := '';
Edit3.Text := '';
Edit4.Text := '';

end;

end.
End Listing Four

50 November 1996 Delphi Informant

Begin Listing Five — Formatting Date and Time Strings
{ Demonstation program that displays date and time in

specific formats }

unit Fig3;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, StdCtrls;

type

TForm1 = class(TForm)

Label1: TLabel;

Label2: TLabel;

Label3: TLabel;

Edit1: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Edit4: TEdit;

Label4: TLabel;

Edit5: TEdit;

Edit6: TEdit;

Edit7: TEdit;

Edit8: TEdit;

Label5: TLabel;

Label6: TLabel;

Button1: TButton;

Button2: TButton;

procedure Button2Click(Sender: TObject);

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button2Click(Sender: TObject);

begin

{ Clear Edit boxes }

Edit1.Text := '';

Edit2.Text := '';

Edit3.Text := '';

Edit4.Text := '';

Edit5.Text := '';

Edit6.Text := '';

Edit7.Text := '';

Edit8.Text := '';

end;

procedure TForm1.Button1Click(Sender: TObject);

var

MyDate, MyTime : TDateTime;

begin

MyDate := StrToDate(Edit1.Text); { e.g. 01/08/96 }

MyTime := StrToTime(Edit5.Text); { e.g. 22:50 }

{ e.g. 1996-January-08 }

Edit2.Text := FormatDateTime('yyyy-mmmm-dd',MyDate);

{ e.g. Jan,8,96,Mon }

Edit3.Text := FormatDateTime('mmm,d,yy,ddd',MyDate);

{ e.g. Monday/08/01/96 }

Edit4.Text := FormatDateTime('dddd/dd/mm/yy',MyDate);

{ e.g. 10:50 PM }

Edit6.Text := FormatDateTime('t',MyTime);

{ e.g. 10:50:00 PM }

Edit7.Text := FormatDateTime('tt',MyTime);

{ e.g. 10-50-00-p }

Edit8.Text := FormatDateTime('hh-nn-ss-a/p',MyTime);

end;

end.

End Listing Five

Begin Listing Six — Day of Week
{ Demonstration program to demonstrate EncodeDate,

DayOfWeek, and the exceptions that can be raised when

converting to and from the TDateTime format }

unit Fig4;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, StdCtrls;

type

TForm1 = class(TForm)

Label1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Edit1: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Button1: TButton;

Button2: TButton;

Label5: TLabel;

Edit4: TEdit;

Label6: TLabel;

Edit5: TEdit;

procedure Button2Click(Sender: TObject);

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button2Click(Sender: TObject);

begin

{ Clears the Edit Boxes }

Edit1.Text := '';

Delphi at Work

51 November 1996 Delphi Informant

Edit2.Text := '';

Edit3.Text := '';

Edit4.Text := '';

end;

procedure TForm1.Button1Click(Sender: TObject);

var

DT : TDateTime;

ErrorFlag : Boolean;

DOW : Integer;

begin

ErrorFlag := FALSE;

{ Try to encode the year, month and day given by

the user }

try

DT := EncodeDate(StrToInt(Edit3.Text),

StrToInt(Edit1.Text),

StrToInt(Edit2.Text));

{ Exception clause }

except

{ If an error occurs set the flag }

on EConvertError do ErrorFlag := True;

end;

if ErrorFlag then

{ Error flag was needed to catch the else part }

ShowMessage('Invalid Date')

else

{ If valid display date }

Edit4.Text := DateToStr(DT);

{ Get DayOfWeek integer and pass it into

the case statement }

DOW := DayOfWeek(DT);

{ Match the string }

case DOW of

1 : Edit5.Text := 'Sunday';

2 : Edit5.Text := 'Monday';

3 : Edit5.Text := 'Tuesday';

4 : Edit5.Text := 'Wednesday';

5 : Edit5.Text := 'Thursday';

6 : Edit5.Text := 'Friday';

7 : Edit5.Text := 'Saturday';

end;

end;

end.

End Listing Six

Delphi at Work

TextFile
Teach Yourself Delphi 2 in 21 Days: A Worthwhile Challenge

If you have programming
experience and need a fast way
to learn Delphi 2, you’ll find
what you need in Teach
Yourself Delphi 2 in 21 Days
by Dan Osier, Steve
Grobman, and Steve Batson
[SAMS, 1996]. Anything
worth having is worth work-
ing for, and the authors intend
to make you work. Written for
the commercial developer who
needs practical how-to knowl-
edge, Teach Yourself will get
you up to speed in no time
(well, 21 days).

More than a simple update of
Teach Yourself Delphi in 21
Days by Andrew Wozniewicz
and Namir Shammas [SAMS,
1995], Teach Yourself Delphi 2
in 21 Days was completely re-
written, using new examples,
covering more material, and
moving at a faster pace than
the first edition; the only sim-
ilarity is the book’s format.

As with other “21 Days”
titles by SAMS, this release is
well organized; it contains
daily reviews and exercises,
weekly overviews, and week-
ending retrospectives. The
daily exercises are arranged in
logical order, and can be easi-
ly managed in your spare
time. Teach Yourself is a
“build-it-as-you-go” book, as
it should be. Don’t expect a
CD-ROM, you won’t find
one. You don’t need one,
either; the authors teach you
Delphi 2 with short and
snappy exercises. For the best
results, work through all the
examples. However, if you
need a quick fix, you can
always download the source
52 November 1996 Delphi Informant
from the MCP Forum on
CompuServe (GO
MACMILLAN).

Day 1 kicks off your three-
week odyssey with an
overview of Delphi, includ-
ing discussions about RAD
programming, the differences
between Delphi 1 and 2,
VCLs, variables, constants,
procedures, functions,
events ... you get the idea.

Day 2 covers the IDE,
including the basics
(Component Palette, Object
Inspector, etc.), the Delphi
menu structure, and cus-
tomization. Days 3 and 4
introduce and address Object
Pascal. Before you know it,
you’ll have a grasp of con-
stants, variables, data types
and structures, operators, etc.
On Day 5 you learn what
constitutes a Delphi applica-
tion: projects, forms, units,
and more. You’ll enjoy learn-
ing the fundamentals of GUI
design on Day 6. The week
ends with lessons in object-
oriented programming.
Topics include the software
life-cycle, software engineer-
ing, object-oriented design,
and more. The exercises here
could be better, but the
authors’ intent to foster good
Windows applications is
commendable.

The concise Week 1 review
and Week 2 preview offer a
good time to reflect on what
you’ve learned, as well as pre-
pare for the coming exercises.

Teach Yourself begins the sec-
ond week with exceptions and
events, and Day 9 provides a
good primer on the Visual
Component Library, possibly
the most concise VCL intro-
duction I’ve read. The next
section introduces topics nec-
essary to spice up your appli-
cations. Day 10 offers instruc-
tion about graphics; you’ll
sample the color palette, draw
shapes, and learn to use
PaintBoxes and Bitmaps. On
Day 11 you’re introduced to
multimedia and animation.
By day’s end you’ll know dou-
ble-buffered animation tech-
niques, and will have built a
3D spinning cube applet. Day
12 addresses the important
and well-covered subject of
file and directory manage-
ment. This section teaches
about text and binary files, as
well as binary arithmetic, file
attributes, and block reads.

No Delphi book would be
complete without addressing
databases. Day 13 covers data-
bases, the Database Desktop,
data-aware controls and grids,
and accessing field values
using Object Pascal. Calcu-
lated fields and searching by
range are also addressed. You’ll
end the week with an intro-
duction to SQL. By this time
you should be starting to get
serious about Delphi 2.

The final week begins with
instruction on InterBase, and
the use of transaction man-
agement, subqueries, joins,
and stored procedures. Day
16 introduces the fundamen-
tals of ReportSmith, and
Day 17 teaches you how to
print the reports you’ve just
created. After all, what good
is a database if you can’t for-
mat and print the reports?

The final days in this three-
week tutorial include instruc-
tion on OLE 2, using and
writing DLLs, writing your
own visual components, and
developing your own installa-
tion program. Your final exer-
cise teaches you how to
manipulate the Registry and
qualify your applications for
the Windows 95 logo. A
review of Week 3 completes
the 21-day training.

Every day of instruction ends
with a summary, Q&A sec-
tion, quiz, and set of appropri-
ate exercises. All in all, the for-
mat lends itself to quickly
teaching the basics of working
in and with Delphi 2. You’ll
find Teach Yourself Delphi 2 in
21 Days a challenge, but well
worth the effort.

— James Callan

Teach Yourself Delphi 2 in 21
Days by Dan Osier, Steve
Grobman, and Steve Batson,
SAMS Publishing, 1996,
201 West 103rd Street,
Indianapolis, IN 46290,
(800) 428-5331.

ISBN: 0-672-30863-0
Price: US$35.00
706 pages

File | New
Directions / Commentary

A Lexus with Hardwood Seats?
D eveloping a successful software application is not unlike engineering a quality automobile. The most respected auto-
mobile makers in the world — such as Lexus, BMW, and Volvo — are successful because of their ability to com-

bine performance, reliability, and ergodynamics into a marketable package. So too, the most popular software applica-
tions combine these three qualities.
have multiple, dockable toolbars,
Unfortunately, this is far from typi-
cal of most software applications
built today. While most developers
focus on speed and stability, there is
a tendency to overlook the final ele-
ment of this triad: usability. This
propensity to dismiss user interface
(UI) issues as trivial is prevalent
among developers and IT managers
alike. And even if Lexus had a supe-
rior engine and unrivaled reliability,
not many people would buy one if
it had wooden seats and an AM
radio. The same principle holds true
for your application: no matter
what is under the hood, the applica-
tion will only be accepted if its UI
is successful. This month we’ll look
at the Windows interface, focusing
on emerging trends in interface
design to keep in mind when creat-
ing Delphi applications.

Similarity. UIs are becoming increas-
ingly similar. Windows applications
look far more alike today than they did
five years ago. At one time, it seemed
that every major Windows software
vendor had their own distinct look and
feel, as did Borland with BWCC.DLL
custom controls. Windows 95’s new
interface — along with Microsoft’s
rigid Win95 logo requirements —
helped curb this trend. While different
vendors still put their own twists on an
application’s UI, Windows 95 applica-
tions are remarkably similar.

The result is consistency across
applications. As Charles Petzold
once said, “Even a bad interface is
good — so long as it’s consistent
53 November 1996 Delphi Informant
among applications. I don’t care
what I have to do to invoke a File
Open dialog box, or to navigate
among the fields of the dialog, as
long as once I learn how to do it, I
don’t ever have to learn something
else.” (PC Magazine)

Organization. UIs are becoming
better organized in terms of con-
trols, commands, and online Help.
Windows controls certainly have
evolved since Windows 3.0, which
had little to offer. Windows 3.1
made several advancements, particu-
larly with the tabbed dialog box.
Windows 95, however, goes far
beyond this interface metaphor with
several new controls, the most sig-
nificant of which is the Treeview.
The Treeview control is significant
because most applications deal with
managing organized collections of
data, and this data is often assem-
bled hierarchically in the real world.
Many types of database applica-
tions, for example, could use a
Treeview control rather than relying
on the ubiquitous table grid.

Commands are also better orga-
nized. In Windows 3.0, most com-
mands were accessed either through
a top-level menu or through key-
board shortcuts. By Windows 3.1,
most applications employed toolbars
and some even provided context-
sensitive, pull-down menus. In
Windows 95, users have the most
flexible interface environment ever;
for example, applications typically
enabling you to mix and match
depending on your current tasks.

Furthermore, Help is more accessi-
ble. In the past, online Help was
always held in a separate application
window. Applications provided
some degree of context sensitivity,
but Windows 95 transformed this
to bring Help into the application
itself. For more information on how
to use “What’s This?”-style Help in
your applications, I recommend an
excellent resource named
WHTHLP.TXT in the Delphi 2
forum (GO BDELPHI32) on
CompuServe.

Innovation vs. Consistency. Creating a
successful UI involves balancing inno-
vation with consistency. A developer’s
goal should be to produce an innova-
tive interface, but one that respects the
boundaries of Windows 95 standards.
Don’t get uppity: the same truth
applies to automobile makers. You
may see Lexus come out with state-of-
the-art stereo technology next year, but
you won’t see them replace the steering
wheel or brake pedal with controls
they believe work better.

— Richard Wagner

Richard Wagner is Contributing Editor
to Delphi Informant and Chief
Technology Officer of Acadia Software in
the Boston, MA area. He welcomes your
comments at rwagner@acadians.com, or
on the File | New home page at
http://www.acadians.com/filenew/-
filenew.htm.

	Table of Contents
	Delphi Tools
	New Delphi Components
	OOPSoft Inc. Introduces Object Express for Delphi
	Classic Software Ships Classic Component Set Version 1.20
	HREF Tools Announces the Release of WebHub EEP 8.9
	Kalliopi International Announces Release of Security Components
	Seagate’s Information Management Group Ships Crystal Reports 5.0

	News Line
	Borland Announces Its Latest Version of InterBase
	Borland Names Paul W. Emery II as CFO
	Borland Announces IntraBuilder in Three Configurations

	From Database to Browser
	THTMLWriter
	HTML Data Source
	Displaying the Data
	Exceptions
	Demonstration Project
	Conclusion
	Listing One — The Generated HTML Method

	Fingerpainting
	How Much Money Is $00FF80FF?
	Stop and Think
	Into Action
	The ColorEdt Property Editor
	Friendly, Friendly, Friendly
	Examining the ColorEdt Property Editor
	Finishing Touches
	Conclusion

	Subproperty Editors
	Subproperty Review
	Why Subproperties Are Hard to Define
	Use a Surrogate Component
	Get Set
	All in Order
	Into the RTTI
	Not without Risk
	Putting It to Use
	Conclusion

	Cross-Platform Delphi
	Background
	What to Do?
	Conclusion

	Data of Many Shapes
	Polly Who?
	From Sets ...
	... to Databases
	The Power behind the Grids
	Making the Static Dynamic
	Subtle Power: The Best Kind
	Hover Editing
	The Personal Psychic Network
	Data Model
	Forming the Form
	Becoming Data Aware
	The Power Plan
	Adding the Power
	Conclusion
	Listing Two — The Psychic Unit

	At Your Fingertips
	How do I create a table at run time?
	How can I quickly view the SQL assigned to a TQuery object at run time?
	How can I add blinking text to a form?

	Inquire Within
	Implementation
	Results

	A Matter of Time
	The TDateTime Type
	TTimeDate’s Advantages
	Time, Date, and Now
	Displaying the System Date and Time
	More Date and Time functions
	Formatting the Date and Time String
	More Date and Time Functions
	Converting to and from the DOS Date and Time Format
	Sidebar - Date and Time Combos

	Object Pascal Routines
	Sidebar - On December 31, 1999, at 11:59:59 PM ...

	Conclusion
	Listing Three — System Date and Time
	Listing Four — Add 15 Minutes Program
	Listing Five — Formatting Date and Time Strings
	Listing Six — Day of Week

	TextFile
	Teach Yourself Delphi 2 in 21 Days: A Worthwhile Challenge

	A Lexus with Hardwood Seats?

